

IEEE ISIT 2016

Optimizing Data Freshness, Throughput, and Delay in Multi-Server Information-Update Systems

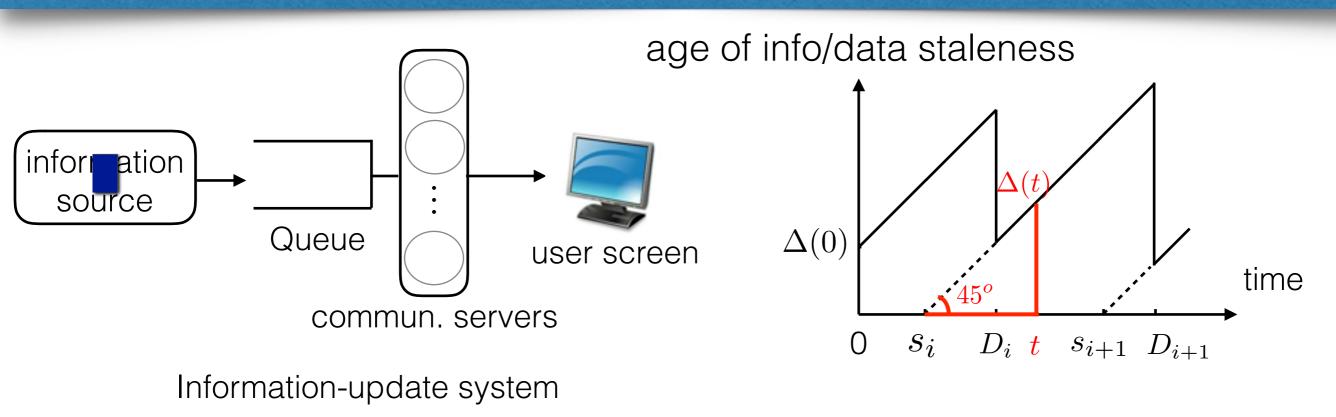
Ahmed M. Bedewy

Joint work with Yin Sun, Ness B. Shroff

Departments of ECE, The Ohio State University

Nov. 7th 2016

What is the Age of Information?

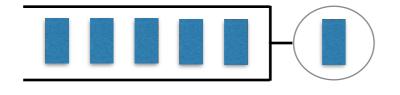


- A stream of messages generated at an information source
- To be sent to a destination via multiple communication channels/servers
- Update i is generated at time S_i and delivered at time D_i

Definition: at any time t, the age-of-information $\Delta(t)$ is the "age" of the freshest message available at the destination

$$\Delta(t) = t - \max\{s_i : D_i \le t\}$$

Difference between Delay & Age



High arrival rate

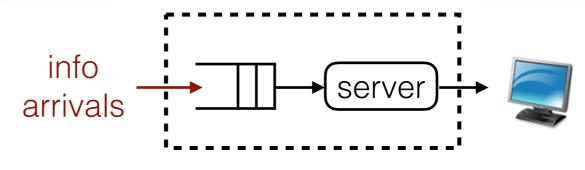
Low arrival rate

High age

Age is different from delay. [Kaul, Yates, Gruteser, Infocom 2012]

- High arrival rate: long waiting time, packets becomes stale
- Low arrival rate: short queue, but infrequent updates
 Age is not monotonic wrt queue length
- For delay, Little's Law says: $L = \lambda W$
- Delay grows linearly wrt queue length

Open Questions



Enqueue-and-forward model

• Age Characterization and Age Reduction:

- M/M/1, M/D/1, D/M/1 [Kaul, Yates, Gruteser 2012]
- M/M/2 [Kam, Kompella, Ephremides 2014]
- Multi-sources [Yates, Kaul ISIT 2012] [Huang, Modiano 2015]
- Packet management, LCFS [Kam, Kompella, Ephremides 2013, 2014]
- Channel state info [Costa, Valentin, Ephremides, 2015]
- LCFS (single server) with & without preemption [Kaul, Yates, Gruteser 2012]

• Question 1: Which policy is age-optimal?

Open Questions (cont.)

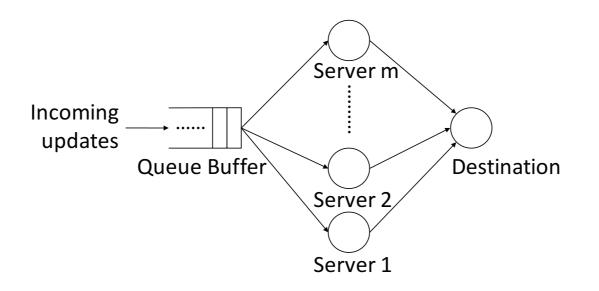
Information Updates

• News, emails, notifications, stock quotes, ...

Users may be interested in not just the latest updates, but also past news.

- Question 2: Is there a policy which simultaneously optimizes age, throughput, and delay?
 - This presentation will answer these two questions

System Model



- An information-update system with
 - **m** *i.i.d.* servers
 - Queue with buffer size ${\cal B}$
- Packet *i* is generated at time s_i , and arrives at time a_i ($s_1 \leq s_2 \leq ...$)
 - Arbitrary arrival process (including non-stationary)
 - Update packets can arrive **out of order** (e.g., $a_i > a_{i+1}$ but $s_i < s_{i+1}$)
- $\,$ $\,$ The set of all causal policies is denoted by Π

Definitions

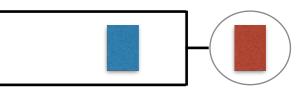
- Definition. Service Preemption: At any time
 - A server can switch to send any packet
 - The preempted packet will be stored back into the queue
 - To be sent at a later time when the servers are available again.
- **Definition. Stochastic Ordering**: Let X and Y be two random variables. Then, X is said to be **stochastically smaller** than Y (denoted as $X \leq_{st} Y$), if

$$\mathbb{P}\{X > x\} \le \mathbb{P}\{Y > x\}, \quad \forall x \in \mathbb{R}.$$

• In other words: $X \leq_{st} Y$ iff there exist two random variable \hat{X} and \hat{Y} , defined on the same probability space, such that

$$\hat{Y} =_{\mathrm{st}} Y \quad \& \quad X =_{\mathrm{st}} X$$
$$\mathbb{P}\{\hat{X} \le \hat{Y}\} = 1$$

and



Definitions

• **Definition. Stochastic Ordering of Stochastic Processes:** Two random processes $\{X(t), t \in [0, \infty)\}$ and $\{Y(t), t \in [0, \infty)\}$ satisfies $\{X(t), t \in [0, \infty)\} \leq_{st} \{Y(t), t \in [0, \infty)\}$ iff there exist two random processes $\{\hat{X}(t), t \in [0, \infty)\}$ and $\{\hat{Y}(t), t \in [0, \infty)\}$, defined on the same probability space, such that

 $\{\hat{Y}(t), t \in [0,\infty)\} =_{\mathrm{st}} \{Y(t), t \in [0,\infty)\} \& \{\hat{X}(t), t \in [0,\infty)\} =_{\mathrm{st}} \{X(t), t \in [0,\infty)\}$ and

$$\mathbb{P}[\hat{X}(t) \le \hat{Y}(t), t \in [0, \infty)] = 1$$

• Definition. Age Optimality: A policy $\gamma \in \Pi$ is said to be age-optimal, if for all $\pi \in \Pi$

$$\{\Delta_{\gamma}(t), t \in [0,\infty)\} \leq_{\mathrm{st}} \{\Delta_{\pi}(t), t \in [0,\infty)\}.$$

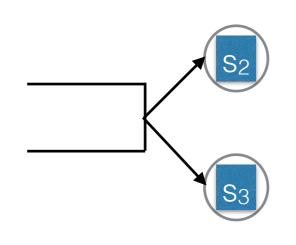
Policy P Algorithm

Policy P: Preemptive Last Generated First Served (LGFS)

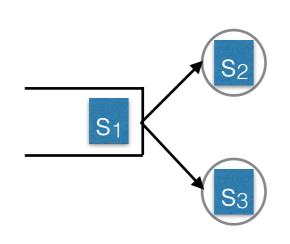
Arrival

S1

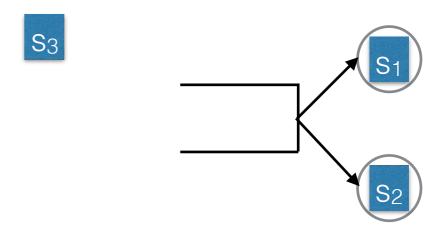
• Stale packet



Departure



• Fresh packet



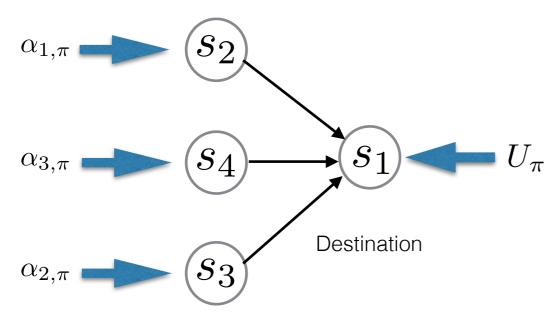
- Policy P is serving the freshest packets among all arrived packets.
- Preempted packet is stored back in the queue to preserve the throughput.

Main Theorem

Theorem 1: For 1. i.i.d. exponential service time distribution
2. any packet generation and arrival times
3. any buffer sizes B
The preemptive LGFS policy is age-optimal.

• The system state of policy π is $V_{\pi}(t) = (U_{\pi}(t), \alpha_{1,\pi}(t), \ldots, \alpha_{m,\pi}(t))$, where

- $U_{\pi}(t)$ is the **largest** time stamp of the **delivered packets**
- $\alpha_{i,\pi}(t)$ is the *i*-th smallest time stamp of the **packets being transmitted**



3-Servers system

Proof sketch

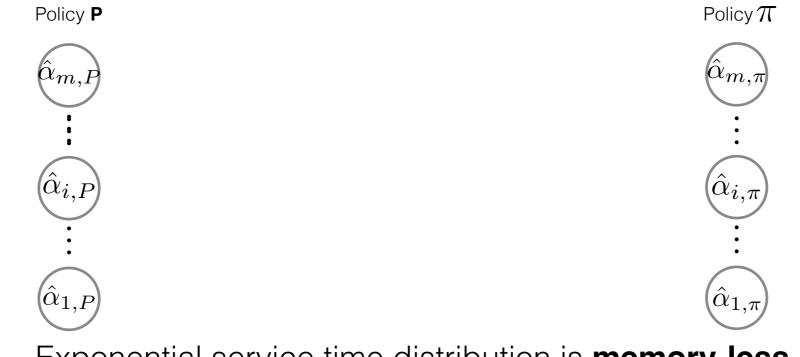
Policy $_P$ vs policy π

 $V_{\pi}(t) = (U_{\pi}(t), \alpha_{1,\pi}(t), \dots, \alpha_{m,\pi}(t))$

Step 1: Construction

- $\{\hat{V}_P(t), t \in [0,\infty)\} =_{\mathrm{st}} \{V_P(t), t \in [0,\infty)\}.$
- $\{\hat{V}_{\pi}(t), t \in [0,\infty)\} =_{\mathrm{st}} \{V_{\pi}(t), t \in [0,\infty)\}.$

Step 2: Coupling



Exponential service time distribution is memory-less

Def.

Step 3: Forward induction in time

• Prove $\mathbb{P}[\hat{V}_P(t) \ge \hat{V}_\pi(t), t \in [0,\infty)] = 1$

 $\{\hat{V}_P(t), t \in [0, \infty)\} =_{\text{st}} \{V_P(t), t \in [0, \infty)\}.$ $\{\hat{V}_\pi(t), t \in [0, \infty)\} =_{\text{st}} \{V_\pi(t), t \in [0, \infty)\}.$

 $\{\Delta_P(t), t \in [0,\infty)\} \leq_{\mathrm{st}} \{\Delta_\pi(t), t \in [0,\infty)\}, \ \forall \pi \in \Pi$ 10(14)

 $\{V_P(t), t \in [0, \infty)\} \ge_{\mathrm{st}} \{V_\pi(t), t \in [0, \infty)\}. \quad \forall \pi \in \Pi$

Corollaries

- **Corollary**: The age performance of the **preemptive LGFS** policy remains the same for any queue size $B \ge 0$
 - Stale packets are stored back in the queue.

- Corollary: For the same system setting as Theorem 1, the preemptive LGFS policy minimizes:
 - 1. The time-average age
 - 2. Average peak age
 - 3. Time-average age penalty
 - These age metrics are increasing function of the age process.

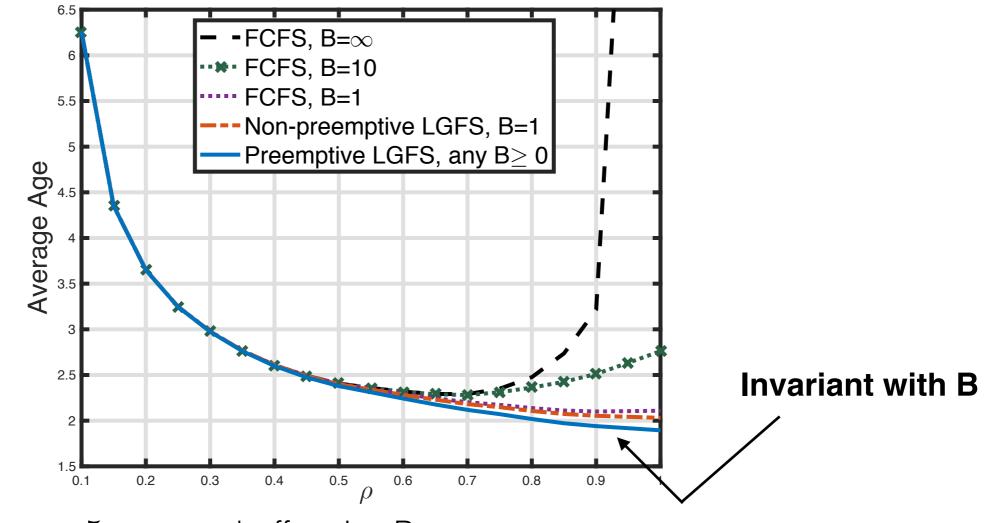
Theorem

Theorem 2: For 1. i.i.d. exponential service time distribution

- 2. Any packet generation and arrival times
- 3. Infinite buffer size $B = \infty$

The preemptive LGFS policy is throughput-optimal and mean-delay-optimal among all policies in Π .

Simulation Result



• m = 5 servers, buffer size B

inter-generation times: *i.i.d.* Erlang-2 distribution

• $(a_i - s_i)$ is modeled to be either **1** or **100** with equal probability

Observations: 1. Preemptive LGFS **outperforms** all other policies.

2. The age performance of the preemptive LGFS is invariant for any B

3. FCFS: The age gets worse as B increases.

Summary & Future Work

Exponential service time.

- The preemptive LGFS optimizes age, throughput and delay among all causally feasible policies for
 - Arbitrary packet generation times s_1, s_2, \ldots
 - Arbitrary arrival process a_1, a_2, \ldots (could be non-stationary, non-ergodic, out of order arrivals)
 - Any number of servers
- Other service time distributions?

Service time dist.	Exponential	NWU Hyperexponential distribution	NBU Erlang distribution
Preemptive LGFS	Age-optimal (any arrival orders)	Not age-optimal in the same policy space	
Non-preemptive LGFS	Near age-optimal		Near age-optimal

