

IEEE ISIT 2017

Age-Optimal Information Updates in Multihop Networks

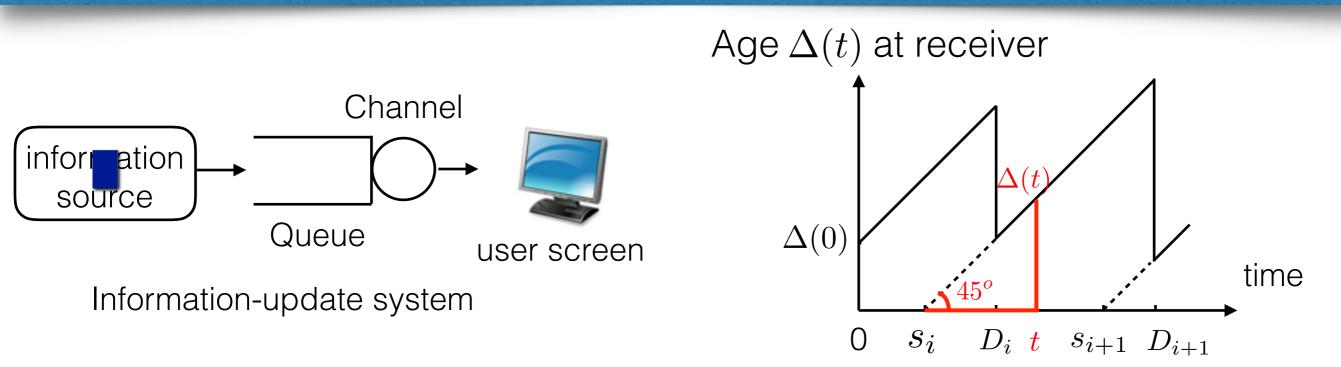
Ahmed M. Bedewy

Joint work with Yin Sun, Ness B. Shroff

Departments of ECE and CSE, The Ohio State University

June 26th 2017

What is the Age of Information?



- A stream of messages generated at an information source
- To be sent to a destination via communication channel
- Update i is generated at time S_i and delivered at time D_i

Definition: at time t, the age-of-information $\Delta(t)$ is the "age" of the freshest message available at the destination before time t

$$\Delta(t) = t - \max\{s_i : D_i \le t\}$$

Motivation

Information Updates

- News spreading across the Media websites
- Retweet on Twitter
-
- Intelligent Transport Systems
 - Vehicles share information.

- Age-optimality: Multi-channel single hop network [Bedewy, Sun, Shroff, ISIT16]
- No study optimized the age in multi hop network

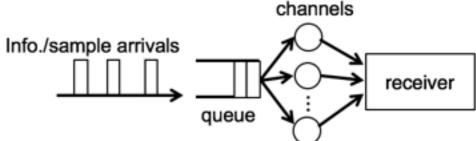
Question

• Can we achieve age-optimality in **general multihop networks**?

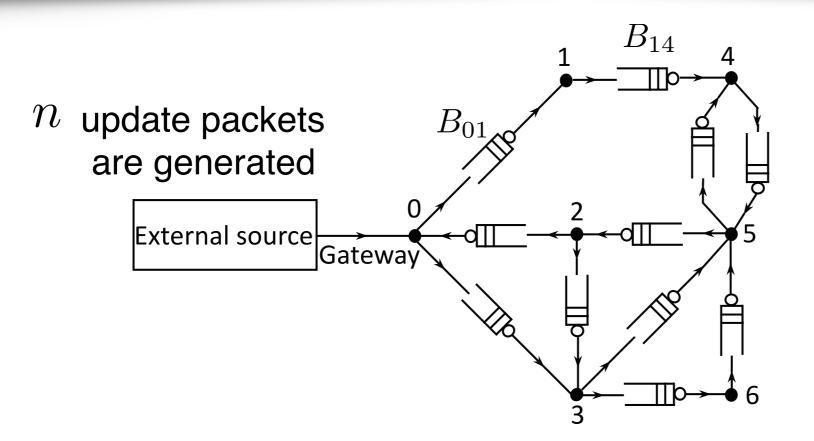
We will see:

Intuitive policies are age-optimal in a quite strong sense.

2(16)



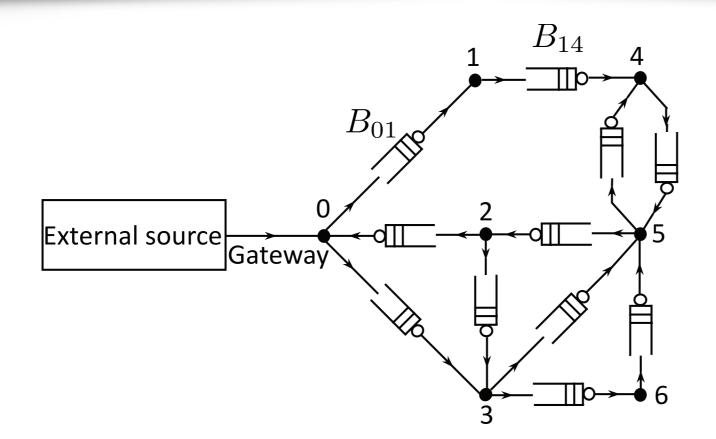
Model: Interference Free Network



General multihop Netwerk represented by directed graph: \$\mathcal{G}(\mathcal{V}, \mathcal{L})\$, \$|\mathcal{V}| = N\$
 External Arrival process:

- Packet *i* is generated at time s_i , arrives at time a_{i0} . Hence, $s_i \leq a_{i0}$
- Arbitrary packet generation & arrival processes (could also be non-stationary)
- Out-of-order arrivals at node 0 is possible (e.g., $s_i > s_j$, $a_{i0} < a_{j0}$)
- Packet transmission times are independent across links and i.i.d. across time

Model: Interference Free Network



- The age at node j is $\Delta_j(t) = t \max\{s_i : a_{ij} \le t\}$
- The age processes of all the network nodes is $\Delta = \{\Delta_j(t), t \in [0, \infty), j \in \mathcal{V}\}$

We optimize the **age processes of all the nodes**

General Age Metric

• Age Penalty Functional $g(\Delta)$:

- $\boldsymbol{\Delta} = \{\Delta_j(t), t \in [0, \infty), j \in \mathcal{V}\}$
- Any non-decreasing functional g of the age processes of all nodes Δ , i.e.,

If
$$\Delta_1 \leq \Delta_2$$
, then $g(\Delta_1) \leq g(\Delta_2)$

- Prior age metrics as **examples**:
 - 1. Avg. age: [Kaul, Yates, Gruteser'12, etc.]

$$g_1(\Delta) = \frac{1}{T} \int_0^T \Delta(t) dt$$

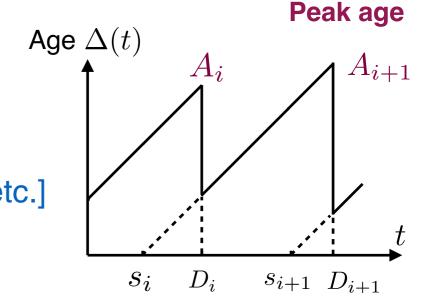
2. Avg. peak age: [Costa, Cordreanu, Ephremides' 14, etc.]

$$g_2(\Delta) = \frac{1}{K} \sum_{i=1}^{K} A_i$$

3. Avg. age penalty function: [Sun, Uysal, Yates, Koksal, Shroff'16, etc.]

$$g_3(\Delta) = \frac{1}{T} \int_0^T h(\Delta(t)) dt$$
 (Allow the limits $K, T \to \infty$)

The most general age metric so far.



Age Optimality

- **Definition. Stochastic Ordering**: Let X and Y be two random variables. Then, $X \leq_{st} Y$ $\mathbb{P}\{X > x\} \leq \mathbb{P}\{Y > x\}, \quad \forall x \in \mathbb{R}.$
- A policy γ is said to be **age-optimal** if:
 - Minimizing the age processes of all nodes in stochastic ordering sense

$$\left[\mathbf{\Delta}_{\gamma} | \mathcal{I} \right] \leq_{\text{st}} \left[\mathbf{\Delta}_{\pi} | \mathcal{I} \right] \quad \forall \pi \in \Pi \qquad \mathbf{\Delta} = \{ \Delta_j(t), t \in [0, \infty), j \in \mathcal{V} \}$$

 Equivalently: Minimizing all non-decreasing functional of the age processes of all nodes

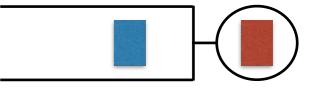
$$\mathbb{E}[g(\mathbf{\Delta}_{\gamma})|\mathcal{I}] = \min_{\pi \in \Pi} \mathbb{E}[g(\mathbf{\Delta}_{\pi})|\mathcal{I}]$$

- g: non-decreasing age functional
- $\mathcal{I} = \{n, (s_i, a_{i0})_{i=1}^n, \mathcal{G}(\mathcal{V}, \mathcal{L}), (B_{ij}, (i, j) \in \mathcal{L})\}$: Set of system parameters
- Π : set of causal policies

Scheduling Policies

• Preemptive Last Generated First Served (prmp-LGFS) policy:

- The last generated packet is sent first
- When young packet arrives
 *Preempt old packet being transmitted



- Non-preemptive LGFS (non-prmp-LGFS)policy:
 - The last generated packet is sent first
 - Preemption is not allowed
 - After transmission, the link sends the **next freshest** packet in its queue

Results for Exponential Service Time

Theorem 1: If packet transmission times are **exponentially distributed**, then for **all** system parameters \mathcal{I} and $\pi \in \Pi$

$$[\mathbf{\Delta}_{ ext{prmp-LGFS}} | \mathcal{I}] \leq_{ ext{st}} [\mathbf{\Delta}_{\pi} | \mathcal{I}]$$

or equivalently, for all ${\mathcal I}$ and non-decreasing functional ${\mathcal G}$

$$\mathbb{E}[g(\mathbf{\Delta}_{\text{prmp-LGFS}})|\mathcal{I}] = \min_{\pi \in \Pi} \mathbb{E}[g(\mathbf{\Delta}_{\pi})|\mathcal{I}]$$

• System parameters \mathcal{I} includes:

- 1. Network topology \mathcal{G}
- 2. Packet generation times $\{s_i\}_i$
- 3. Packet arrival times at node 0 $\{a_{i0}\}_i$
- 4. Buffer sizes $\{B_{ij}\}_{(i,j)\in\mathcal{L}}$

Results for General Service Time

Theorem 2: If packet transmission times are **arbitrary** given at each link, then for all \mathcal{I} and $\pi \in \prod_{npwc}$

$$[\mathbf{\Delta}_{ ext{non-prmp-LGFS}} | \mathcal{I}] \leq_{ ext{st}} [\mathbf{\Delta}_{\pi} | \mathcal{I}]$$

or equivalently, for all ${\mathcal I}$ and non-decreasing functional g

$$\mathbb{E}[g(\boldsymbol{\Delta}_{\text{non-prmp-LGFS}})|\mathcal{I}] \leq_{\text{st}} \min_{\pi \in \Pi_{npwc}} \mathbb{E}[g(\boldsymbol{\Delta}_{\pi})|\mathcal{I}]$$

• Π_{npwc} : Set of all **non-preemptive work-conserving** policies • System parameters \mathcal{I} includes:

- 1. Network topology ${\mathcal G}$
- 2. Packet generation times $\{s_i\}_i$
- 3. Packet arrival times at node 0 $\{a_{i0}\}_i$
- 4. Buffer sizes $\{B_{ij}\}_{(i,j)\in\mathcal{L}}$

These are the first age optimality results for multi-hop networks.

Proof idea

Step 1: System state process of policy π : $\{\mathbf{U}_{\pi}(t), t \in [0, \infty)\}$

 $\mathbf{U}_{\pi}(t) = (U_{0,\pi}(t), U_{2,\pi}(t), \dots, U_{N-1,\pi}(t))$

 $U_{j,\pi}(t) = \max\{s_i : a_{ij} \le t\}$: The generation time of the freshest packet that has arrived at node j at time t

Step 2: Coupling argument

Departure instants at each link are the same under all policies

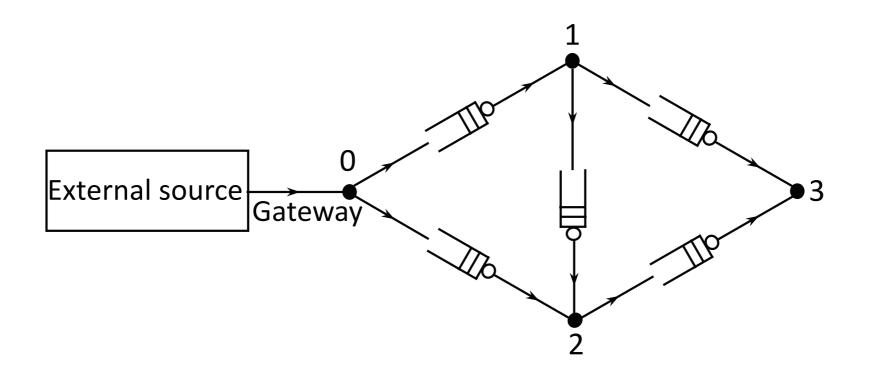
Step 3: Use sample path argument to show that

$$\{\mathbf{U}_{\text{our policy}}(t), t \in [0,\infty)\} \ge \{\mathbf{U}_{\pi}(t), t \in [0,\infty)\}$$

 $\{ \mathbf{\Delta}(t), t \in [0,\infty) \}$ is **minimized** under our policies in **stochastic ordering sense**

 $\mathbb{E}[g(\mathbf{\Delta})]$ is **minimized** under our policies

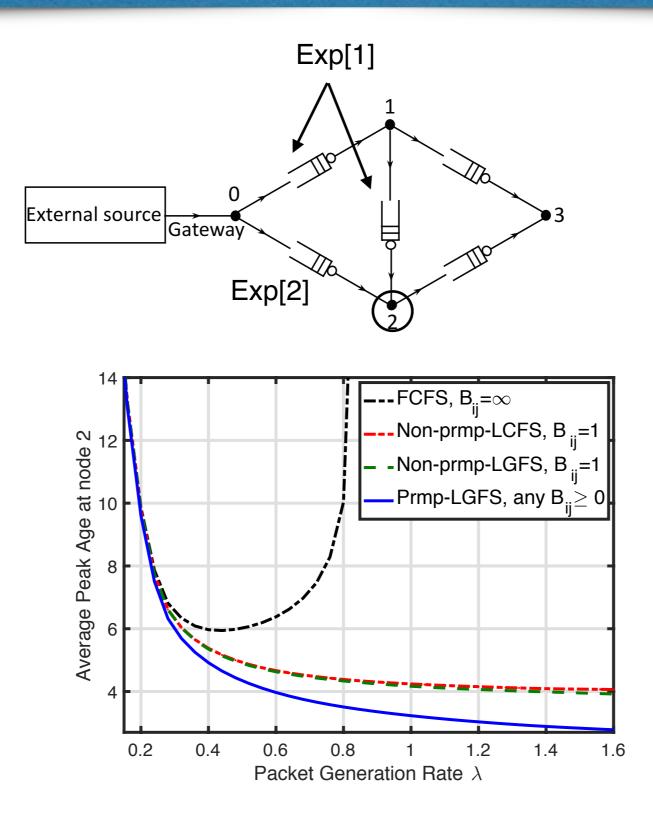
Simulation Result



Inter-generation times: *i.i.d.* Erlang-2 distribution

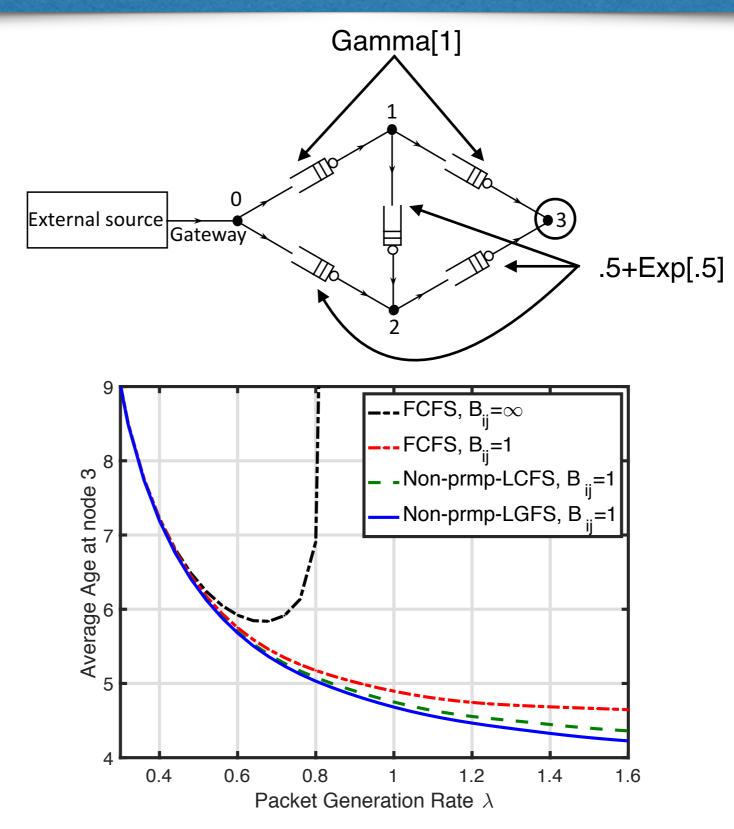
• $(a_{i0} - s_i)$ is modeled to be either **1** or **100** with equal probability

Simulation for Exponential Service Time



Observations: Preemptive LGFS **outperforms** all other policies.

Simulation for General Service Time



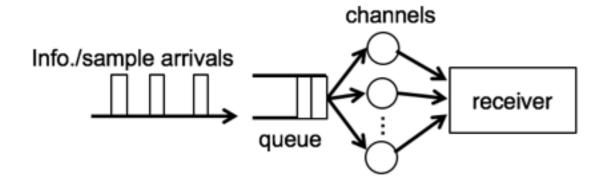
Observations: Non-preemptive LGFS **outperforms** all other non-preemptive workconserving policies

Extension to Non-exponential Service Time

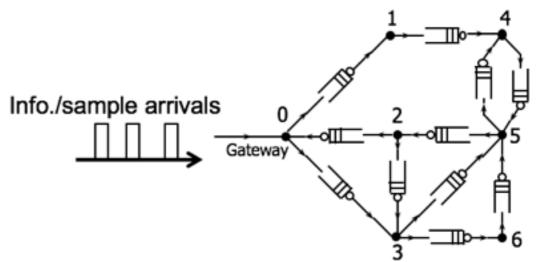
New-Better-than-Used (NBU) distributions

(e.g. geometric, gamma, exponential, negative binomial distribution, etc.)

Model 1: Multi-channel network



Model 2: Multihop network



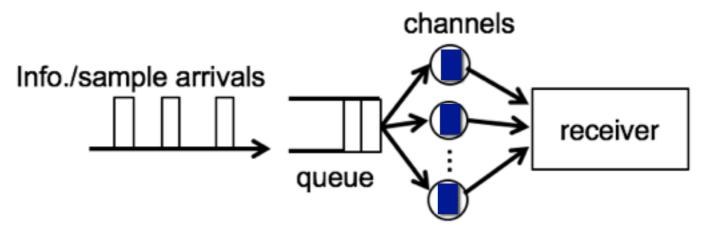
Thm: Suppose that the packet service times are NBU, then for all \mathcal{I}

 $\min_{\pi \in \Pi} \mathbb{E}[\bar{\Delta}_{\pi} | \mathcal{I}] \le \mathbb{E}[\bar{\Delta}_{\text{non-prmp-LGFS}} | \mathcal{I}] \le \min_{\pi \in \Pi} \mathbb{E}[\bar{\Delta}_{\pi} | \mathcal{I}] + \mathbb{E}[X]$

Thm: Suppose that the packet service times are NBU, then for all \mathcal{I} $\min_{\pi \in \Pi} \mathbb{E}[\bar{\Delta}_{\pi} | \mathcal{I}] \leq \mathbb{E}[\bar{\Delta}_{\text{non-prmp-LGFS}} | \mathcal{I}] \leq 3 \min_{\pi \in \Pi} \mathbb{E}[\bar{\Delta}_{\pi} | \mathcal{I}]$

Where
$$\bar{\Delta}_{\pi} = \liminf_{T \to \infty} \frac{\int_0^T \Delta_{\pi}(t) dt}{T}$$
, $\mathbb{E}[X]$: Mean service time

Packet Replication may improve Age Performance



Packet replication technique

Replication worsens the Throughput & delay performance for NBU:

[Sun, Koksal, Shroff'16]

Thm: Suppose that the packet service times are NBU, then for all \mathcal{I} $\min_{\pi \in \Pi} \mathbb{E}[\bar{\Delta}_{\pi} | \mathcal{I}] \leq \mathbb{E}[\bar{\Delta}_{\text{non-prmp-LGFS-R}} | \mathcal{I}] \leq \min_{\pi \in \Pi} \mathbb{E}[\bar{\Delta}_{\pi} | \mathcal{I}] + \mathbb{E}[X]$

non-prmp-LGFS-R: Non-preemptive LGFS with replication policy

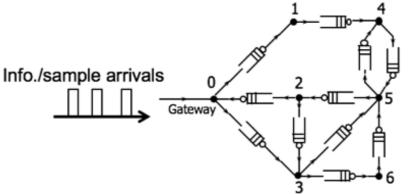
- Replication helps in delivering fresh packets as soon as possible
- Replication exploits the diversity provided by multiple servers

Summary

Most general age metric model:

Any non-decreasing functional of the age processes of all nodes (most general)

System settings: arbitrary network topology, arbitrary packet generation & arrival processes



Contribution:

- 1.For exponential service times, prmp-LGFS is age-optimal among all causal policies
- 2.For **general** service times, **non-prmp-LGFS** is **age-optimal** among all non-preemptive workconserving policies.

3.For NBU service times, non-prmp-LGFS is within three times of the optimum avg. age

Multi-channel single hop network:

- 1. For NBU service times, non-prmp-LGFS is within two times of the optimum avg. age
- 2. For NBU service times, non-prmp-LGFS-R is within two times of the optimum avg. age

