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What is the Age of Information?

• In real-time applications, fresh data is more important than stale data
§ E.g., Autonomous vehicles, wireless sensor networks,…
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What is the Age of Information?

Definition: at any time , the age-of-information (AoI) is the “age” 

of the freshest sample available at the destination before time 

• If sample   is generated at     and delivered at

• Age grows linearly, and drops upon new sample delivered

t �(t)

t

i Si Di

�(t) = t�max{Si : Di  t}

2



Difference between Delay & Age

• Low sampling rate

§ Empty buffer        Low delay

§ Infrequent updates       High age

• High sampling rate

§ Full buffer      High delay

§ Long waiting time       High age
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Difference between Delay & Age

• Delay grows linearly wrt queue length        Little’s law
• Age is not monotonic wrt queue length
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Our System Model
1

2

m

sources

• Information update system with      sources

• Channel: FIFO queue with i.i.d. service times

• One source can communicate at a time

• Scheduler: Specifies the transmission order of the sources

m
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Our System Model
1

2

m

sources

• Controllable sample generation times

• Sample   is generated at    , with service time    , and is delivered at 

§ can be any discrete random variable (i.i.d. & bounded)

• Feedback: Instantaneous Ack upon sample reception

• Trick: Only take sample when the server is idle, i.e., 

• : The waiting time after the delivery of packet   at 

• Sampler: Controls                    , or equivalently 

i Si Yi

Yi � 0

Di

Zi i Di

(S1, S2, . . .) (Z0, Z1, . . .)

Si+1 � Di
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Why Waiting Times?

Q11
Q12

tS3 D3

Z0

S1 D1

Y1 Z1

S2 D2

Y2

∆1(t)

a11

a12

a13

Z2 Y3

S4 D4

Z3 Y4

Q10

a10

Q13
• Multiple sources network 

• and       are generated from Source 1S2 S4

5



Why Waiting Times?

Q11
Q12

tS3 D3

Z0

S1 D1

Y1 Z1

S2 D2

Y2

∆1(t)

a11

a12

a13

Z2 Y3

S4 D4

Z3 Y4

Q10

a10

Q13
• Multiple sources network 

• and       are generated from Source 1S2 S4

Why do we need to impose waiting times?

5



Why Waiting Times?
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Q13
• Multiple sources network 

• and       are generated from Source 1S2 S4

Why do we need to impose waiting times?
• Natural choice: Zero-wait policy:

§ Generate a sample as soon as the channel is idle (                  )

• Zero-wait is NOT always Age-optimal!

Si+1 = Di
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Example: Zero-Wait is Not always Age-optimal
Example: Single source NW, channel transmission time = 0 or 2 with Prob. 0.5

0, 0, 2, 0, 2, 2, 0, 2, 0, 0, …

Zero-wait policy:

• Samples 1 & 2 are generated at the same time      Sample 2 carries no information

Wasted Resources, Can we do better?

-wait policy:
• Wait for    sec., if the previous sample has zero service time

• Don’t wait otherwise.

Average age: 

• Zero-wait:                  ,       -wait:     

✏
✏

�̄(✏) = (✏2 + 2✏+ 8)/(4 + 2✏)

✏ �̄(0.5) = 1.85�̄(0) = 2
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Problem Formulation

• Scheduler   : Specifies the transmission order of the sources

• Sampler  : Controls                    , or equivalently 

• Challenge: Joint optimization of scheduler and sampler for minimizing 

the total average age

• : Set of causal schedulers                                :Set of causal samplersF

1

2

m

sources

⇡

f (S1, S2, . . .) (Z0, Z1, . . .)

min
⇡2⇧,f2F

�̄(f,⇡) = min
⇡2⇧,f2F

lim sup
n!1

E
hPm

l=1

RDn

0 �l(t)dt
i

E[Dn]

⇧
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Prior Works

Optimal scheduler for minimizing AoI in multi-source networks
(Time-slotted system)

Stochastic arrivals Active sources
• Wireless NW with interference:
[He, Yuan, Ephremides 2018]
• Broadcast NW:
[Hsu 2018]
[Hsu, Modiano, Duan 2017]
[Kadota, Sinha, Modiano 2018]
[Kadota, Sinha, Uysal-Biyikoglu, Singh, 
Modiano 2018]

• Multiaccess channel:
[Yates, Kaul 2017]
• Wireless NW with interference:
[R. Talak, Karaman, Modiano 2018]

8



Prior Works

Optimal scheduler for minimizing AoI in multi-source networks
(Time-slotted system)

Stochastic arrivals Active sources
• Wireless NW with interference:
[He, Yuan, Ephremides 2018]
• Broadcast NW:
[Hsu 2018]
[Hsu, Modiano, Duan 2017]
[Kadota, Sinha, Modiano 2018]
[Kadota, Sinha, Uysal-Biyikoglu, Singh, 
Modiano 2018]

• Multiaccess channel:
[Yates, Kaul 2017]
• Wireless NW with interference:
[R. Talak, Karaman, Modiano 2018]

First to consider joint optimization of sampler + scheduler to minimize AoI:
• Multisource networks 
• Any discrete random transmission time
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Step 1: Separation Principle
Maximum Age First (MAF) scheduler:

• The source with the maximum age is served the first 

[Li-Eryilmaz-Srikant’15, Kadota-Uysal-Singh-Modiano’16, Hsu-Modiano-Dua’17,

Sun-Uysal-Kompella’18]

Proposition 1: For any given sampler            , MAF scheduler minimizes AoI

compared to scheduling policies in    , i.e., 

: the total average age                    : MAF scheduler

f 2 F
⇧

�̄(f,⇡MAF)  �̄(f,⇡) 8f 2 F , 8⇡ 2 ⇧

�̄ ⇡MAF

Proof idea: Stochastic ordering technique
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Step 1: Separation Principle

The scheduler and sampler can be designed independently!

Maximum Age First (MAF) scheduler:
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Reduced Optimization Problem

1

2

m
sources

• Goal: minf2F �̄(f,⇡MAF )

f , (Z0, Z1, . . .)

�̄(f,⇡MAF) = lim sup
n!1

E[
Pm

l=1

RDn

0 �l(t)dt]

E[Dn]
,
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Reduced Optimization Problem
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Step 2: Equivalent Sampling Problem

• Problem A: �̄opt = min
f,(Z0,Z1,...)

lim sup
n!1

Pn�1
i=0 E[

Pm
l=1 Qli]Pn�1

i=0 E[Zi + Yi+1]
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Step 2: Equivalent Sampling Problem

• Problem A: �̄opt = min
f,(Z0,Z1,...)

lim sup
n!1

Pn�1
i=0 E[

Pm
l=1 Qli]Pn�1

i=0 E[Zi + Yi+1]

Algorithm:

1. Inner loop: Solve Problem B

2. Outer loop: Seek                        , s.t. (Bisection method) � = �̄opt � 0 p(�̄opt) = 0

• Problem B: p(�) = min
f,(Z0,Z1,...)

lim sup
n!1

1

n

n�1X

i=0

E
"

mX

l=1

Qli � �(Zi + Yi+1)

#

Lemma: 

1. If                , then the optimal samplers for Problems A and B are identical

2. iff

p(�) = 0

�̄opt = � p(�) = 0
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Dynamic Programming (DP)

• Problem B:

• Average Cost per stage DP problem:

State:                                           ,               : The lth largest age value at time  

State evolution: 

Cost: 

s(i) = (a[1]i, . . . , a[m]i) a[l]i Di

C(s(i), Zi) = EYi+1

"
mX

l=1

Qli(s(i), Zi, Yi+1)� �̄opt(Zi + Yi+1)

#

p(�) = min
f,(Z0,Z1,...)

lim sup
n!1

1

n

n�1X

i=0

E
"

mX

l=1

Qli � �̄opt(Zi + Yi+1)

#

lim sup
n!1

1

n
E
"
n�1X

i=o

C(s(i), Zi)

#

a[m]i+1 = Yi+1

a[l]i+1 = a[l+1]i+1 + Zi + Yi+1, l = 1, . . . ,m� 1
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Solution of DP
Proposition 2: There exists a stationary deterministic policy that is average 

cost optimal and solves the following Bellman’s equation: 

: The optimal average cost                                    : Relative cost function
: Transition probability                                       

�+ h(s) = min
z

"
C(s, z) +

X

s0

Pss0h(s
0)

#

Pss0

� h(s)

Proof idea: Communicating MDP

• Relative value iteration (RVI)
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Solution of DP
Proposition 2: There exists a stationary deterministic policy that is average 

cost optimal and solves the following Bellman’s equation: 

: The optimal average cost                                    : Relative cost function
: Transition probability                                       

�+ h(s) = min
z

"
C(s, z) +

X

s0

Pss0h(s
0)

#

Pss0

� h(s)

Proof idea: Communicating MDP

• Relative value iteration (RVI)
Suffer

Curse of dimensionality

• We need simplification
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Threshold-Based Sampler
Proposition 3 (Threshold-based sampler): The optimal waiting time is 

ZERO for states whose                                          .As � (�̄opt �mE[Y ])
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Threshold-Based Sampler
Proposition 3 (Threshold-based sampler): The optimal waiting time is 

ZERO for states whose                                          .As � (�̄opt �mE[Y ])

Apply threshold test

If test fails, use RVI
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Threshold-Based Sampler
Proposition 3 (Threshold-based sampler): The optimal waiting time is 

ZERO for states whose                                          .As � (�̄opt �mE[Y ])

Outer loop: Bisection method

Apply threshold test

If test fails, use RVI
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Threshold-Based Sampler
Proposition 3 (Threshold-based sampler): The optimal waiting time is 

ZERO for states whose                                          .As � (�̄opt �mE[Y ])

Theorem: The MAF scheduler and the threshold-based sampler are 

jointly optimal for minimizing the total average age.

As a result of Propositions 1, 2, and 3, we get 
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Bellman’s Equ. Approximation

• Bellman’s equation: � = min
z

"
C(s, z) +

X

s0

Pss0(h(s
0)� h(s))

#• Towards a simpler solution:
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Bellman’s Equ. Approximation

• Bellman’s equation: � = min
z
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#

• First order Tylor approx.: h(s0)� h(s) ⇡ (y � a[m])
@h(t)

@a[m]
+

m�1X

l=1

(a[l+1] � a[l] + z + y)
@h(t)

@a[l]

• Water-filling solution:

After the substitution and taking the derivative

ẑ?s =


th� As

m

�+

Golden-section method to obtain optimal threshold

• Towards a simpler solution:
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Simulation Results
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Observations:
1. MAF scheduler outperforms the RAND scheduler
2. With MAF, threshold-based outperforms zero-wait and constant-wait:

• Zero-wait sampler is Not always optimal
• Optimizing the scheduler is not enough

3. The performance of Water-filling and threshold-based are almost the same
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Avg. Peak Age problem

• Much simpler problem

Theorem: The MAF scheduler and the zero-wait sampler are jointly 

optimal for minimizing the total average peak age.

• What minimizes avg peak AoI doesn’t necessary minimize avg AoI
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Summary & Future work
• Joint optimization of the scheduler and sampler for minimizing AoI.

• Separation principle: The scheduler and sampler can be designed independently

• MAF scheduler and Threshold-based sampler are jointly optimal for avg. AoI

• Water-filling sampler can approximate the threshold-based sampler

§ Simulations show that their performances are almost the same

• MAF scheduler and zero-wait sampler are jointly optimal for avg. peak AoI

• Future work:

§ Symmetric non-linear age functional

§ Asymmetric non-linear age functional
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Q&A
Thanks
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