

AUBURN

Age-optimal Sampling and Transmission Scheduling in Multi-Source Systems

Ahmed M. Bedewy[‡]

Joint work with Yin Sun*, Sastry Kompella[§], Ness B. Shroff[‡]

[‡]The Ohio State University, ^{*}Auburn University, [§]Naval Research Laboratory

July 3rd 2019

What is the Age of Information?

- In real-time applications, fresh data is more important than stale data
 - E.g., Autonomous vehicles, wireless sensor networks,...

What is the Age of Information?

Definition: at any time t, the age-of-information (Aol) $\Delta(t)$ is the "age"

of the freshest sample available at the destination before time t

• If sample *i* is generated at S_i and delivered at D_i

$$\Delta(t) = t - \max\{S_i : D_i \le t\}$$

Age grows linearly, and drops upon new sample delivered

Difference between Delay & Age

- Low sampling rate
 - Empty buffer
 Low delay

- High sampling rate
 - Full buffer
 → High delay

Difference between Delay & Age

- Delay grows linearly wrt queue length

 Little's law
- Age is not monotonic wrt queue length

Our System Model

- Information update system with m sources
- **Channel:** FIFO queue with *i.i.d.* service times
- One source can communicate at a time
- Scheduler: Specifies the transmission order of the sources

Our System Model

- Controllable sample generation times
- Sample *i* is generated at S_i , with service time Y_i , and is delivered at D_i
 - $Y_i \ge 0$ can be any discrete random variable (*i.i.d.* & bounded)
- Feedback: Instantaneous Ack upon sample reception
- Trick: Only take sample when the server is idle, i.e., $S_{i+1} \ge D_i$
- Z_i : The waiting time after the delivery of packet *i* at D_i
- Sampler: Controls (S_1, S_2, \ldots) , or equivalently (Z_0, Z_1, \ldots)

Why Waiting Times?

- Multiple sources network
- S_2 and S_4 are generated from Source 1

Why Waiting Times?

Why Waiting Times?

- Natural choice: Zero-wait policy:
 - Generate a sample as soon as the channel is idle $(S_{i+1} = D_i)$
- Zero-wait is NOT always Age-optimal!

Example: Zero-Wait is Not always Age-optimal

Example: Single source NW, channel transmission time = 0 or 2 with Prob. 0.5

0, 0, 2, 0, 2, 2, 0, 2, 0, 0, ...

Zero-wait policy:

Samples 1 & 2 are generated at the same time
 Sample 2 carries no information
 Wasted Resources, Can we do better?

 ϵ -wait policy:

- Wait for ϵ sec., if the previous sample has zero service time
- Don't wait otherwise.

Average age: $\bar{\Delta}(\epsilon) = (\epsilon^2 + 2\epsilon + 8)/(4 + 2\epsilon)$

• Zero-wait: $\bar{\Delta}(0) = 2$, ϵ -wait: $\bar{\Delta}(0.5) = 1.85$

Problem Formulation

- Scheduler π : Specifies the transmission order of the sources
- Sampler f: Controls (S_1, S_2, \ldots) , or equivalently (Z_0, Z_1, \ldots)
- Challenge: Joint optimization of scheduler and sampler for minimizing the total average age

$$\min_{\pi \in \Pi, f \in \mathcal{F}} \bar{\Delta}(f, \pi) = \min_{\pi \in \Pi, f \in \mathcal{F}} \limsup_{n \to \infty} \frac{\mathbb{E}\left[\sum_{l=1}^{m} \int_{0}^{D_{n}} \Delta_{l}(t) dt\right]}{\mathbb{E}[D_{n}]}$$

• Π : Set of causal schedulers

 \mathcal{F} :Set of causal samplers

Prior Works

Optimal scheduler for minimizing AoI in multi-source networks (Time-slotted system)

Stochastic arrivals

- Wireless NW with interference: [He, Yuan, Ephremides 2018]
- Broadcast NW: [Hsu 2018]
 [Hsu, Modiano, Duan 2017]
 [Kadota, Sinha, Modiano 2018]
 [Kadota, Sinha, Uysal-Biyikoglu, Singh, Modiano 2018]

Active sources

- Multiaccess channel: [Yates, Kaul 2017]
- Wireless NW with interference: [R. Talak, Karaman, Modiano 2018]

Prior Works

Optimal scheduler for minimizing AoI in multi-source networks (Time-slotted system)

Stochastic arrivals

- Wireless NW with interference: [He, Yuan, Ephremides 2018]
- Broadcast NW: [Hsu 2018]
 [Hsu, Modiano, Duan 2017]
 [Kadota, Sinha, Modiano 2018]
 [Kadota, Sinha, Uysal-Biyikoglu, Singh, Modiano 2018]

Active sources

- Multiaccess channel: [Yates, Kaul 2017]
- Wireless NW with interference: [R. Talak, Karaman, Modiano 2018]

First to consider joint optimization of sampler + scheduler to minimize Aol:

- Multisource networks
- Any discrete random transmission time

Step 1: Separation Principle

Maximum Age First (MAF) scheduler:

The source with the maximum age is served the first
 [Li-Eryilmaz-Srikant'15, Kadota-Uysal-Singh-Modiano'16, Hsu-Modiano-Dua'17,
 Sun-Uysal-Kompella'18]

Proposition 1: For any given sampler $f \in \mathcal{F}$, MAF scheduler minimizes Aol compared to scheduling policies in Π , i.e., $\bar{\Delta}(f, \pi_{MAF}) \leq \bar{\Delta}(f, \pi) \ \forall f \in \mathcal{F}, \forall \pi \in \Pi$ $\bar{\Delta}$: the total average age π_{MAF} : MAF scheduler

Proof idea: Stochastic ordering technique

Step 1: Separation Principle

Maximum Age First (MAF) scheduler:

The source with the maximum age is served the first
 [Li-Eryilmaz-Srikant'15, Kadota-Uysal-Singh-Modiano'16, Hsu-Modiano-Dua'17,
 Sun-Uysal-Kompella'18]

Proposition 1: For any given sampler $f \in \mathcal{F}$, MAF scheduler minimizes Aol compared to scheduling policies in Π , i.e.,

$$\bar{\Delta}(f, \pi_{\mathrm{MAF}}) \leq \bar{\Delta}(f, \pi) \ \forall f \in \mathcal{F}, \forall \pi \in \Pi$$

 $\overline{\Delta}$: the total average age π_{MAF} : MAF scheduler

Proof idea: Stochastic ordering technique

The scheduler and sampler can be designed independently!

Reduced Optimization Problem

• Goal: $\min_{f \in \mathcal{F}} \overline{\Delta}(f, \pi_{MAF})$ $f \triangleq (Z_0, Z_1, \ldots)$

$$\bar{\Delta}(f, \pi_{\mathrm{MAF}}) = \limsup_{n \to \infty} \frac{\mathbb{E}[\sum_{l=1}^{m} \int_{0}^{D_{n}} \Delta_{l}(t) dt]}{\mathbb{E}[D_{n}]},$$

Reduced Optimization Problem

• Example: m=2

• Goal: $\min_{f \in \mathcal{F}} \overline{\Delta}(f, \pi_{MAF})$ $f \triangleq (Z_0, Z_1, \ldots)$

$$\bar{\Delta}(f, \pi_{\mathrm{MAF}}) = \limsup_{n \to \infty} \frac{\mathbb{E}\left[\sum_{l=1}^{m} \int_{0}^{D_{n}} \Delta_{l}(t) dt\right]}{\mathbb{E}[D_{n}]},$$

Reduced Optimization Problem

• Example: m=2

• Goal: $\min_{f \in \mathcal{F}} \overline{\Delta}(f, \pi_{MAF})$ $f \triangleq (Z_0, Z_1, \ldots)$

$$\bar{\Delta}(f,\pi_{\mathrm{MAF}}) = \limsup_{n \to \infty} \frac{\mathbb{E}[\sum_{l=1}^{m} \int_{0}^{D_{n}} \Delta_{l}(t)dt]}{\mathbb{E}[D_{n}]}, \ \int_{0}^{D_{n}} \Delta_{l}(t)dt = \sum_{i=0}^{n-1} Q_{li}$$

Step 2: Equivalent Sampling Problem

• Problem A: $\bar{\Delta}_{opt} = \min_{\substack{f \triangleq (Z_0, Z_1, \dots) \ n \to \infty}} \limsup_{\substack{n \to \infty}} \frac{\sum_{i=0}^{n-1} \mathbb{E}[\sum_{l=1}^m Q_{li}]}{\sum_{i=0}^{n-1} \mathbb{E}[Z_i + Y_{i+1}]}$

Step 2: Equivalent Sampling Problem

• Problem A:
$$\bar{\Delta}_{opt} = \min_{\substack{f \triangleq (Z_0, Z_1, \dots) \\ n \to \infty}} \limsup_{\substack{n \to \infty}} \frac{\sum_{i=0}^{n-1} \mathbb{E}[\sum_{l=1}^m Q_{li}]}{\sum_{i=0}^{n-1} \mathbb{E}[Z_i + Y_{i+1}]}$$

• Problem B:
$$p(\beta) = \min_{\substack{f \triangleq (Z_0, Z_1, \dots) \\ n \to \infty}} \limsup_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mathbb{E} \left[\sum_{l=1}^{m} Q_{li} - \beta(Z_i + Y_{i+1}) \right]$$

n-1 Γm

Lemma:

1. If $p(\beta) = 0$, then the optimal samplers for Problems A and B are identical

2.
$$\bar{\Delta}_{opt} = \beta$$
 iff $p(\beta) = 0$

Algorithm:

- 1. Inner loop: Solve Problem **B**
- 2. Outer loop: Seek $\beta = \overline{\Delta}_{opt} \ge 0$, s.t. $p(\overline{\Delta}_{opt}) = 0$ (Bisection method)

Step 2: Equivalent Sampling Problem

• Problem A:
$$\bar{\Delta}_{opt} = \min_{\substack{f \triangleq (Z_0, Z_1, \dots) \\ n \to \infty}} \limsup_{\substack{n \to \infty}} \frac{\sum_{i=0}^{n-1} \mathbb{E}[\sum_{l=1}^m Q_{li}]}{\sum_{i=0}^{n-1} \mathbb{E}[Z_i + Y_{i+1}]}$$

• Problem B:
$$p(\beta) = \min_{\substack{f \triangleq (Z_0, Z_1, \dots) \\ n \to \infty}} \limsup_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mathbb{E} \left[\sum_{l=1}^{n-1} Q_{li} - \beta(Z_i + Y_{i+1}) \right]$$

n-1 Γm

Lemma:

1. If $p(\beta) = 0$, then the optimal samplers for Problems A and B are identical

2.
$$\bar{\Delta}_{opt} = \beta$$
 iff $p(\beta) = 0$

Algorithm:

- 1. Inner loop: Solve Problem **B**
- 2. Outer loop: Seek $\beta = \overline{\Delta}_{opt} \ge 0$, s.t. $p(\overline{\Delta}_{opt}) = 0$ (Bisection method)

Dynamic Programming (DP)

• Problem B: $p(\beta) = \min_{\substack{f \triangleq (Z_0, Z_1, \dots) \\ n \to \infty}} \lim_{n \to \infty} \sup_{i=0}^{n-1} \mathbb{E} \left[\sum_{l=1}^m Q_{li} - \bar{\Delta}_{opt}(Z_i + Y_{i+1}) \right]$ • Average Cost per stage DP problem: $\limsup_{n \to \infty} \frac{1}{n} \mathbb{E} \left[\sum_{i=0}^{n-1} C(s(i), Z_i) \right]$

State: $s(i) = (a_{[1]i}, \dots, a_{[m]i})$, $a_{[l]i}$: The Ith largest age value at time D_i State evolution: $a_{[m]i+1} = Y_{i+1}$ $a_{[l]i+1} = a_{[l+1]i+1} + Z_i + Y_{i+1}, \ l = 1, \dots, m-1$

Cost:
$$C(s(i), Z_i) = \mathbb{E}_{Y_{i+1}} \left[\sum_{l=1}^m Q_{li}(s(i), Z_i, Y_{i+1}) - \bar{\Delta}_{opt}(Z_i + Y_{i+1}) \right]$$

Solution of DP

Proposition 2: There exists a stationary deterministic policy that is average

cost optimal and solves the following Bellman's equation:

$$\lambda + h(s) = \min_{z} \left[C(s, z) + \sum_{s'} \mathbb{P}_{ss'} h(s') \right]$$

 λ : The optimal average cost

h(s) : Relative cost function

 $\mathbb{P}_{ss'}$: Transition probability

Proof idea: Communicating MDP

• Relative value iteration (RVI)

Solution of DP

Proposition 2: There exists a stationary deterministic policy that is average cost optimal and solves the following Bellman's equation: $\lambda + h(s) = \min_{z} \left[C(s, z) + \sum_{s'} \mathbb{P}_{ss'} h(s') \right]$ $\lambda : \text{The optimal average cost} \qquad h(s) : \text{Relative cost function}$ $\mathbb{P}_{ss'}: \text{Transition probability}$ Proof idea: Communicating MDP

Relative value iteration (RVI)

Curse of dimensionality

• We need simplification

Proposition 3 (Threshold-based sampler): The optimal waiting time is

ZERO for states whose $A_s \ge (\overline{\Delta}_{opt} - m\mathbb{E}[Y]).$

Algorithm 1: Threshold-based sampler based on RVI algorithm. 1 given l = 0, sufficiently large u, tolerance $\epsilon_1 > 0$, tolerance $\epsilon_2 > 0$; ² while $u - l > \epsilon_1$ do $\beta = \frac{l+u}{2};$ 3 $J(\mathbf{s}) = 0, h(\mathbf{s}) = 0, h_{\text{last}}(\mathbf{s}) = 0$ for all states $\mathbf{s} \in \mathcal{S}$; 4 while $\max_{s \in S} |h(s) - h_{last}(s)| > \epsilon_2$ do 5 for *each* $s \in S$ do 6 if $A_s \geq (\beta - m\mathbb{E}[Y])$ then 7 $z_{s}^{*}=0;$ 8 else 9 $z_s^* = \operatorname{argmin}_{z \in \mathbb{Z}} (A_s - \beta)(z + \mathbb{E}[Y]) + \frac{m}{2}(z^2 + 2z\mathbb{E}[Y] + \frac{m}{2}(z^2 + 2z\mathbb{E}[Y]) + \frac{m}{2}(z^2 + 2z\mathbb{E}$ 10 $\mathbb{E}\left[Y^2\right]) + \sum_{\mathbf{s}' \in \mathcal{S}} \mathbb{P}_{\mathbf{s}\mathbf{s}'}(z)h(\mathbf{s}'):$ end 11 $J(\mathbf{s}) = (A_s - \beta)(z + \mathbb{E}[Y]) + \frac{m}{2}(z^2 + 2z\mathbb{E}[Y] + \mathbb{E}[Y^2]) +$ 12 $\sum_{\mathbf{s'}\in\mathcal{S}}\mathbb{P}_{\mathbf{ss'}}(z^*_{\mathbf{s}})h(\mathbf{s'});$ end 13 $h_{\text{last}}(\mathbf{s}) = h(\mathbf{s});$ 14 $h(\mathbf{s}) = J(\mathbf{s}) - J(\mathbf{o});$ 15 end 16 if $J(\mathbf{o}) \ge 0$ then 17 $u = \beta;$ 18 else 19 $l = \beta;$ 20 end 21 22 end

Proposition 3 (Threshold-based sampler): The optimal waiting time is **ZERO** for states whose $A_s \ge (\overline{\Delta}_{opt} - m\mathbb{E}[Y])$.

As a result of Propositions 1, 2, and 3, we get

Theorem: The MAF scheduler and the threshold-based sampler are

jointly optimal for minimizing the total average age.

- Towards a simpler solution:
- Bellman's equation: $\lambda = \min_{z} \left[C(s, z) + \sum_{s'} \mathbb{P}_{ss'}(h(s') h(s)) \right]$

- Towards a simpler solution:
- Bellman's equation: $\lambda = \min_{z} \left[C(s, z) + \sum_{s'} \mathbb{P}_{ss'}(h(s') h(s)) \right]$
- First order Tylor approx.: $h(s') h(s) \approx (y a_{[m]}) \frac{\partial h(t)}{\partial a_{[m]}} + \sum_{l=1}^{m-1} (a_{[l+1]} a_{[l]} + z + y) \frac{\partial h(t)}{\partial a_{[l]}}$

- Towards a simpler solution:
- Bellman's equation: $\lambda = \min_{z} \left[C(s, z) + \sum_{s'} \mathbb{P}_{ss'}(h(s') h(s)) \right]$
- First order Tylor approx.: $h(s') h(s) \approx (y a_{[m]}) \frac{\partial h(t)}{\partial a_{[m]}} + \sum_{l=1}^{m-1} (a_{[l+1]} a_{[l]} + z + y) \frac{\partial h(t)}{\partial a_{[l]}}$

After the substitution and taking the derivative

• Water-filling solution: $\hat{z}_s^{\star} = \left[th - \frac{A_s}{m}\right]^+$

- Towards a simpler solution:
- Bellman's equation: $\lambda = \min_{z} \left[C(s, z) + \sum_{s'} \mathbb{P}_{ss'}(h(s') h(s)) \right]$
- First order Tylor approx.: $h(s') h(s) \approx (y a_{[m]}) \frac{\partial h(t)}{\partial a_{[m]}} + \sum_{l=1}^{m-1} (a_{[l+1]} a_{[l]} + z + y) \frac{\partial h(t)}{\partial a_{[l]}}$

After the substitution and taking the derivative

• Water-filling solution: $\hat{z}_s^{\star} = \left[th - \frac{A_s}{m}\right]^+$

Golden-section method to obtain optimal threshold

Simulation Results

Observations:

- 1. MAF scheduler outperforms the RAND scheduler
- 2. With MAF, threshold-based outperforms zero-wait and constant-wait:
 - Zero-wait sampler is Not always optimal
 - Optimizing the scheduler is not enough
- 3. The performance of Water-filling and threshold-based are almost the same

Avg. Peak Age problem

• Much simpler problem

Theorem: The **MAF** scheduler and the **zero-wait** sampler are jointly optimal for minimizing the total average **peak** age.

• What minimizes avg peak Aol doesn't necessary minimize avg Aol

Summary & Future work

- Joint optimization of the scheduler and sampler for minimizing Aol.
- Separation principle: The scheduler and sampler can be designed independently
- MAF scheduler and Threshold-based sampler are jointly optimal for avg. Aol
- Water-filling sampler can approximate the threshold-based sampler
 - Simulations show that their performances are almost the same
- MAF scheduler and zero-wait sampler are jointly optimal for avg. peak Aol

- Future work:
 - Symmetric non-linear age functional
 - Asymmetric non-linear age functional

Q&A

Thanks