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What is the Age of Information”?
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* In real-time applications, fresh data is more important than stale data
= E.g., Autonomous vehicles, wireless sensor networks,...
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Definition: at any time ¢, the age-of-information (Aol) A(¢) is the “age”
of the freshest sample available at the destination before time ¢
« If sample ¢ is generated at .S; and delivered at D;

A(t) =t —max{S; : D; <t}

« Age grows linearly, and drops upon new sample delivered



Difference between Delay & Age

channel channel
10 0, Je- <  NNNNNAN, Tile- <
samples buffer receiver samples buffer receiver
* Low sampling rate « High sampling rate
= Empty buffer = Low delay = Full buffer== High delay
* |nfrequent updates =% High age = Long waiting time == High age
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Difference between Delay & Age

LD 0 -3 NN, Wile- &

samples buffer receiver samples buffer receiver

« Delay grows linearly wrt queue length = Little’s law
* Age is not monotonic wrt queue length
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Our System Model
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Information update system with 1 sources
Channel: FIFO queue with i.i.d. service times
One source can communicate at a time

Scheduler: Specifies the transmission order of the sources



Our System Model
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Controllable sample generation times

Sample 7 is generated at .S;, with service time Y}, and is delivered at D),
= Y; > 0 can be any discrete random variable (i.i.d. & bounded)

Feedback: Instantaneous Ack upon sample reception

Trick: Only take sample when the serveris idle, i.e., S;, 1 > D;

Z;: The waiting time after the delivery of packet ¢ at D,

Sampler: Controls (51, So, .. .), or equivalently (Zg, Z1, .. .)



Why Waiting Times?
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« Multiple sources network

« S5 and S, are generated from Source 1



Why Waiting Times?
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« Multiple sources network

« S5 and S, are generated from Source 1

'Why do we need to impose waiting times? |

* Natural choice: Zero-wait policy:

» Generate a sample as soon as the channel is idle (S;1.1 = D;)

Zero-wait is NOT always Age-optimal!



Example: Zero-Wait is Not always Age-optimal

Example: Single source NW, channel transmission time = 0 or 2 with Prob. 0.5
0,0,2,0,2,20,2,0,0, ...

Zero-wait policy:

« Samples 1 & 2 are generated at the same time = Sample 2 carries no information

Wasted Resources, Can we do better?

€ -wait policy:
« Wait for € sec., if the previous sample has zero service time

 Don’t wait otherwise.

Average age: A(e) = (¢ +2¢ + 8)/(4 + 2¢)
+ Zero-waitt A(0) =2, €wait: A(0.5) = 1.85



Problem Formulation
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Scheduler 7: Specifies the transmission order of the sources
Sampler f: Controls (51, S2, .. .), or equivalently (Zo, Z1, . . .)
Challenge: Joint optimization of scheduler and sampler for minimizing

the total average age

m Dn
in _A(f,7)= min i B[S o Attt
we%l}]{lef 7 _Werﬁl,lﬁef lqrzn—folip ]E[Dn]

II: Set of causal schedulers JF :Set of causal samplers



Prior Works

Optimal scheduler for minimizing Aol in multi-source networks
(Time-slotted system)

Stochastic arrivaTs Kctive sources
* Wireless NW with interference: e Multiaccess channel:
[He, Yuan, Ephremides 2018] [Yates, Kaul 2017]
 Broadcast NW: * Wireless NW with interference:
[Hsu 2018] [R. Talak, Karaman, Modiano 2018]

[Hsu, Modiano, Duan 2017]

[Kadota, Sinha, Modiano 2018]
[Kadota, Sinha, Uysal-Biyikoglu, Singh,
Modiano 2018]



Prior Works

Optimal scheduler for minimizing Aol in multi-source networks
(Time-slotted system)

Stochastic arrivaTs Kctive sources
* Wireless NW with interference: e Multiaccess channel:
[He, Yuan, Ephremides 2018] [Yates, Kaul 2017]
 Broadcast NW: * Wireless NW with interference:
[Hsu 2018] [R. Talak, Karaman, Modiano 2018]

[Hsu, Modiano, Duan 2017]

[Kadota, Sinha, Modiano 2018]
[Kadota, Sinha, Uysal-Biyikoglu, Singh,
Modiano 2018]

First to consider joint optimization of sampler + scheduler to minimize Aol:
* Multisource networks

* Any discrete random transmission time




Step 1: Separation Principle

Maximum Age First (MAF) scheduler:

» The source with the maximum age is served the first

[Li-Eryilmaz-Srikant’'15, Kadota-Uysal-Singh-Modiano’16, Hsu-Modiano-Dua’17,
Sun-Uysal-Kompella’18]

-

Proposition 1: For any given sampler f € JF, MAF scheduler minimizes Aol

~

compared to scheduling policies in 11, i.e.,
A(f,TFMAF) < A(faﬂ-) Vf S fa\V/ﬂ- e Il
\_ A : the total average age T™™AF : MAF scheduler Y,

[Proof idea: Stochastic ordering technique }
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Proposition 1: For any given sampler f € JF, MAF scheduler minimizes Aol
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compared to scheduling policies in 11, i.e.,
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Vs

Proof idea: Stochastic ordering technique }

(G

The scheduler and sampler can be designed independently! }
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Reduced Optimization Problem
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 Goal: min re A(fa TMAF)
f=(2y,24,...)

m D,
A(f, TmarF) = lim%sup E[lelléoD ]Al(t)dt] |
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Reduced Optimization Problem

« Example: m=2
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Reduced Optimization Problem

« Example: m=2
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* Problem A: A, = min lim sup

Step 2: Equivalent Sampling Problem

A > o B, Quil

f2(Zy,%1,...) n—oo Z?:_()l E[ZZ + Y,;_|_1]
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Step 2: Equivalent Sampling Problem

n—1 m
x _ K ;
* Problem A: A, = min  limsup 2izo B2z Qui

f2(Z0,21,...) n—oo Z?:_()l EZZ —+ Y,;+1]

ProblemB: p(f8)= min limsup— » E Qu — B(Z; +Y;
oblemB: p(9)= | min limsup nz > Q= A2+ Vi)

fl_emma: N

1. If p(B) = 0, then the optimal samplers for Problems A and B are identical

2. Ao =g iff p(3)=0 y

Algorithm:

1. Innerloop: Solve Problem B

2. Outer loop: Seek 8 = A, > 0, 8.t. p(Aype) = 0 (Bisection method)
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fl_emma: N

1. If p(B) = 0, then the optimal samplers for Problems A and B are identical

2. Ao =g iff p(3)=0 y

Algorithm:

1. Inner loop: Solve Problem B

2. Outer loop: Seek 3 = A,y > 0, s.t. p(Aype) = 0 (Bisection method)
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Dynamic Programming (DP)

Zle - opt Z ‘l‘}/H—l)

Problem B: p(f) =  min  limsup — ZE
=0

f2(Zo,Z1,...) mn—oo

n—1
Average Cost per stage DP problem: lim sup — ! —IE Z C'(s(2), Z;)
n—oo N
1=o0 -
State: s(¢) = (api, - -+ Am)i) apq: The Ihlargest age value at time D,
State evolution: a[;,)i+1 = Yit1
api+1 = apg1li+1 +Zi + Yipr, [=1,...,m—1

Cost: C(s(i), Z;) = Ey,,, ZQM ), Zi, Yiz1) — Dope(Zi + Yig1)
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Solution of DP

Eoposition 2: There exists a stationary deterministic policy that is average\

cost optimal and solves the following Bellman'’s equation:

A+ h(s) =min |C(s,2) + Z Pss'h(sl)]

z

A : The optimal average cost
[P s/: Transition probability

h(s) : Relative cost function

J

[Proof idea: Communicating MDP J

Relative value iteration (RVI)



Solution of DP

moposition 2: There exists a stationary deterministic policy that is average\

cost optimal and solves the following Bellman'’s equation:

A+ h(s) =min |C(s,2) + Z Pss'h(sl)]

z

A : The optimal average cost
[P s/: Transition probability

h(s) : Relative cost function

J

[Proof idea: Communicating MDP J

Suffer

Relative value iteration (RVI) msssssss———) Curse of dimensionality

We need simplification
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Threshold-Based Sampler

Proposition 3 (Threshold-based sampler): The optimal waiting time is

ZERO for states whose A > (Agpe — mE[Y]).

Algorithm 1: Threshold-based sampler based on RVI algorithm.

1
2
3
4
5
6
7
8
9

10

11

12

13
14
15
16

17
18

19
20

21
22

given [ = 0, sufficiently large u, tolerance €; > 0, tolerance €; > 0;
while u — I > €; do

end

p =5
J(s) = 0, h(s) = 0, hj,s(s) = 0 for all states s € S;
while maxgcs |h(s) — hju5(s)| > €2 do
for each s € S do
if Ag > (f — mE[Y]) then

| Z; = 0;
else

z}i = argmin_c 7 (As — f)(z + E[Y]) + 22 (2% + 2zE[Y] +

E [Yz]) + 2ses Pss (2)h(s");

end
J(s)=(As — )z + E[Y] + %(z2 + 2zE[Y]+E [Yz]) +
Zs’eS IP)ss’ (Z;)h(s,);
end

hiasi(s) = h(s);
h(s) = J(s) — J(0);

end
if J(o) > 0 then
u=_p;
else
| 1=p;

end

14



Threshold-Based Sampler

Proposition 3 (Threshold-based sampler): The optimal waiting time is

ZERO for states whose A > (Agpe — mE[Y]).

Algorithm 1: Threshold-based sampler based on RVI algorithm.

1 given [ = 0, sufficiently large u, tolerance €; > 0, tolerance €; > 0;

2 whileu —1 > €, do

3 p = HTM;

4 J(s) = 0, h(s) = 0, hj,s(s) = 0 for all states s € S;

5 while maxgcs |h(s) — hju5(s)| > €2 do

6 for eachs € S do

, if A, > (f — mE[Y]) then Apply threshold test

8 | zi =0; <=

9 else

10 zg = argmin, . > (As — f)(z + E[Y]) + %(z2 + 2zE[Y] +

E[Y?]) + Zyes Po (2)A(s);

11 end

12 J(s)=(As — )z + E[Y] + %(zz+22E[Y]+E[Yz])+
Sves Pa (Zh(S);

13 end

14 hiast(s) = h(s);

15 h(s) = J(s) — J(0);

16 end

17 if J(o) > 0 then

18 | u=p:

19 else

20 | = p;

21 end

22 end

14



Threshold-Based Sampler

Proposition 3 (Threshold-based sampler): The optimal waiting time is

ZERO for states whose A > (Agpe — mE[Y]).

Algorithm 1: Threshold-based sampler based on RVI algorithm.
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given [ = 0, sufficiently large u, tolerance €; > 0, tolerance €; > 0;
while u — I > €; do

end

ﬁ — ltu.

2 3
J(s) = 0, h(s) = 0, hj,s(s) = 0 for all states s € S;
while maxgcs |h(s) — hju5(s)| > €2 do

for eachs € S do
if Ag > (f — mE[Y]) then

| Z;:(); .

else

E [Yz]) + 2ses Pss (2)h(s");

end
J(s)=(As — )z + E[Y] + %(z2 + 2zE[Y]+E [Yz]) +
Zs’eS IP)ss’ (Z;)h(s,);
end

hiasi(s) = h(s);
h(s) = J(s) — J(0);

end
if J(o) > 0 then
u=_p;
else
| 1=p;

end

Apply threshold test

zg = argmin, . > (As — f)(z + E[Y]) + %(z2 +2zEB[Y]+

— |f test fails, use RVI
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Threshold-Based Sampler

Proposition 3 (Threshold-based sampler): The optimal waiting time is

ZERO for states whose A > (Agpe — mE[Y]).

Algorithm 1: Threshold-based sampler based on RVI algorithm.

1 given [ = 0, sufficiently large u, tolerance €; > 0, tolerance €; > 0;

3

2 whileu — [ > ¢; do
’5 = Liu. D
2 3
J(s) = 0, h(s) = 0, hj,s(s) = 0 for all states s € S;

=R -

11

12
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14
15
16
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19
20

21
22

end

while

h

end

maxges |h(s) — higsi(s)| > €2 do

for eachs € S do

if Ag > (f — mE[Y]) then

| Z;:(); .

else

E [Yz]) + ZS’ES Pss (2)h(s");
end

J(s) = (As = )z + E[Y]) + (2% + 2zE[Y] + E [Yz]) +

ZSIES Py (Z;)h(s,)3

end

hiasi(s) = h(s);

(s) = J(s) = J(o);

if J(o) > 0 then

u
else
|
end

zg = argmin, . > (As — f)(z + E[Y]) + %(z2 +2zEB[Y]+

Outer loop: Bisection method

Apply threshold test

— |f test fails, use RVI

14



Threshold-Based Sampler

Proposition 3 (Threshold-based sampler): The optimal waiting time is
ZERO for states whose A > (Agpe — mE[Y]).

As a result of Propositions 1, 2, and 3, we get
[Theorem: The MAF scheduler and the threshold-based sampler are}

jointly optimal for minimizing the total average age.

14



Bellman’s Equ. Approximation

« Towards a simpler solution:

« Bellman’s equation: A\ =min |C(s,z) + ZIP’SS/(h(s’) — h(s))

15



Bellman’s Equ. Approximation

« Towards a simpler solution:

 Bellman’s equation: )\ = mm

C(s,2) + ZIPSS h(s))

l

» First order Tylor approx.: a(s") — h(s) =~ (y

m—1

agy1) —ap + 2 +y)
z:1

Oh(t)
(9a[l]
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Bellman’s Equ. Approximation

Towards a simpler solution:

Bellman’s equation: )\ = mm

C(s +ZIP’SS — h(s))

l

First order Tylor approx.: a(s") — h(s) =~ (y

— u CLIO
afi41] [1] 8am

l:l
lAfter the substitution and taking the derivative
A +
il : Sk S
Water-filling solution: 2] = [th — —]
m
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Bellman’s Equ. Approximation

Towards a simpler solution:

Bellman’s equation: )\ = mm

C(s +ZIP>SS — h(s))

l

First order Tylor approx.: a(s") — h(s) =~ (y

— P Oh()
A1+1] 1] Y 8am

l:l
lAfter the substitution and taking the derivative
A +
il : Sk S
Water-filling solution: 2 = [th — —]
m

Golden-section method to obtain optimal threshold

15



Simulation Results
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@bservations:

~

1.  MAF scheduler outperforms the RAND scheduler
2. With MAF, threshold-based outperforms zero-wait and constant-wait:
« Zero-wait sampler is Not always optimal
«  Optimizing the scheduler is not enough
Q The performance of Water-filling and threshold-based are almost the sam9
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Avg. Peak Age problem

* Much simpler problem

[Theorem: The MAF scheduler and the zero-wait sampler are jointly

optimal for minimizing the total average peak age.

|

« What minimizes avg peak Aol doesn’t necessary minimize avg Aol

17



Summary & Future work

Joint optimization of the scheduler and sampler for minimizing Aol.

Separation principle: The scheduler and sampler can be designed independently
MAF scheduler and Threshold-based sampler are jointly optimal for avg. Aol
Water-filling sampler can approximate the threshold-based sampler

= Simulations show that their performances are almost the same

MAF scheduler and zero-wait sampler are jointly optimal for avg. peak Aol

Future work:
= Symmetric non-linear age functional

= Asymmetric non-linear age functional
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