

ACM MobiHoc 2020

Optimizing Information Freshness using Low-Power Status Updates via Sleep-Wake Scheduling

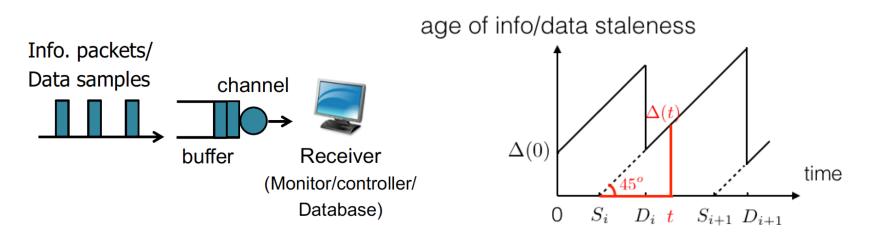
Ahmed M. Bedewy[‡]

Joint work with Yin Sun*, Rahul Singh[‡], and Ness B. Shroff[‡]

[‡]The Ohio State University, ^{*}Auburn University

Oct. 12th 2020

What is the Age of Information?



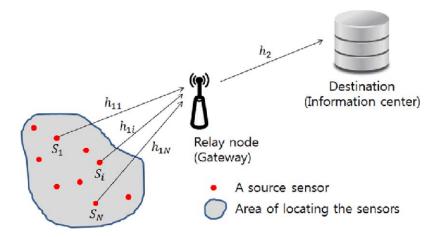
Definition: at any time t, the age-of-information (AoI) $\Delta(t)$ is the "age"

of the freshest sample available at the destination before time t

• If sample i is generated at S_i and delivered at D_i

$$\Delta(t) = t - \max\{S_i : D_i \le t\}$$

• Age grows linearly, and drops upon new sample delivered



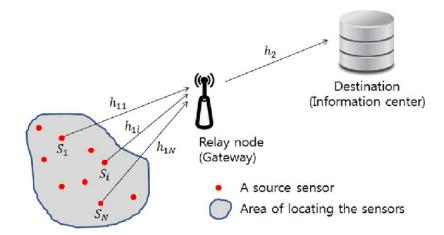
Wireless sensor networks

- Sensor nodes in remote or hard-to-reach areas
- Sharing same channel
- Required to operate unattended for long durations.
- Have limited battery capacity

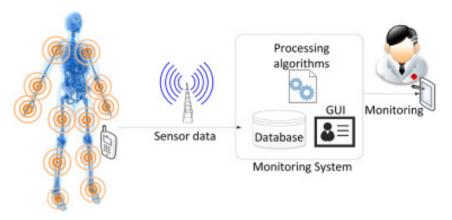
WSN to observe environmental phenomena

Wireless sensor networks

- Sensor nodes in remote or hard-to-reach areas
- Sharing same channel
- Required to operate unattended for long durations.
- Have limited battery capacity



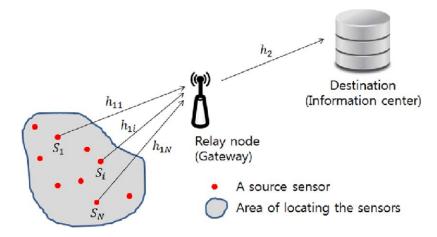
WSN to observe environmental phenomena



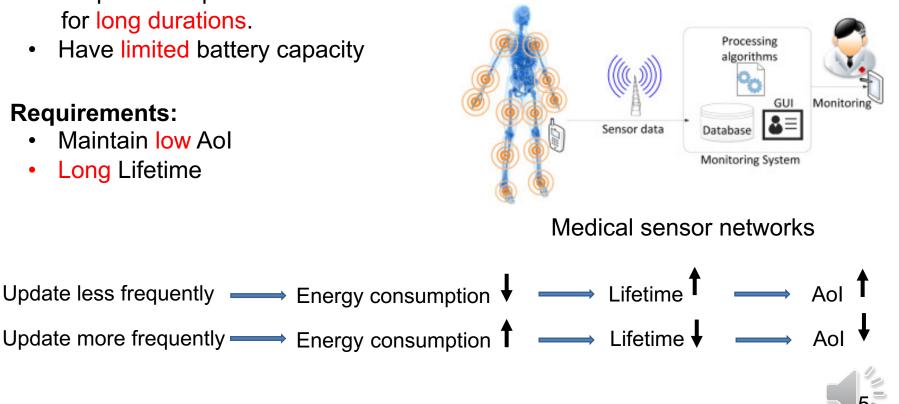
Medical sensor networks

Wireless sensor networks

- Sensor nodes in remote or hard-to-reach areas
- Sharing same channel
- Required to operate unattended • for long durations.
- Have limited battery capacity •
- **Requirements:**
 - Maintain low Aol
 - Long Lifetime

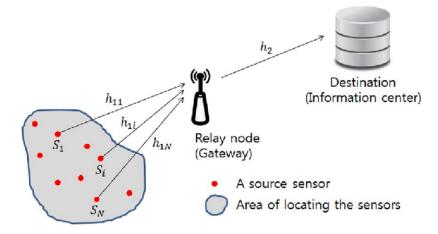


WSN to observe environmental phenomena

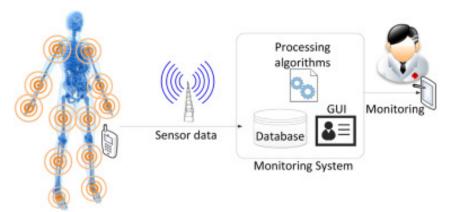


Wireless sensor networks

- Sensor nodes in remote or hard-to-reach areas
- Sharing same channel
- Required to operate unattended for long durations.
- Have limited battery capacity
- Requirements:
 - Maintain low Aol
 - Long Lifetime



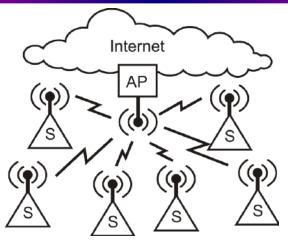
WSN to observe environmental phenomena



Medical sensor networks

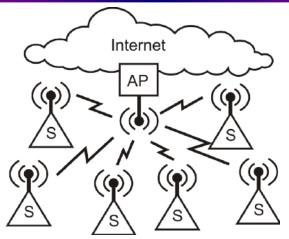
This paper designs an asynchronized scheduling policy that achieves the optimal trade-off between AoI and Lifetime

Our System Model



- Wireless network with M sources
- Sources send update packets to an AP via a shared channel
- Sources utilize carrier sensing to reduce collisions

Our System Model

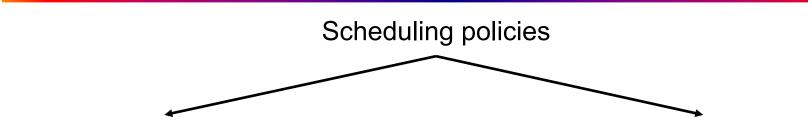


- Wireless network with M sources
- Sources send update packets to an AP via a shared channel
- Sources utilize carrier sensing to reduce collisions
- Each source follows sleep-wake scheme:
 - Generates and transmits a new packet if the channel is sensed idle
 - Sleeps if:
 - Senses the channel to be busy
 - Completes a packet transmission

Our System Model (Cont.)



- Source *l* sleeping period: Exponentially distributed with mean $\frac{1}{r_l}$
- Transmission times: Arbitrarily distributed with mean $\mathbb{E}[T]$
- Sensing time is t_s
- Collision occurs if two sources start transmitting within a duration of t_s



Synchronized schedulers

Synchronized schedulers

Asynchronized schedulers

• With access probabilities (e.g., for timeslotted systems)

$$\mathbf{a} = \{a_l\}_{l=1}^M, \sum_{i=1}^M a_i \le 1$$

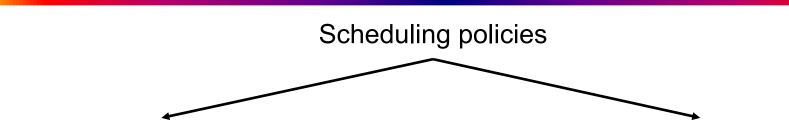
• Source l gains channel access after a packet transmission with a probability a_l

Synchronized schedulers

• With access probabilities (e.g., for timeslotted systems)

$$\mathbf{a} = \{a_l\}_{l=1}^M, \sum_{i=1}^M a_i \le 1$$

- Source l gains channel access after a packet transmission with a probability a_l
 - Pros:
 - Good performance
 - No collision
 - Cons:
 - Require coordination overhead
 - Not implementable in case of:
 - Dense networks
 - Non-constant transmission times
- Ex.:[Talak, Karaman, Modiano 2018]



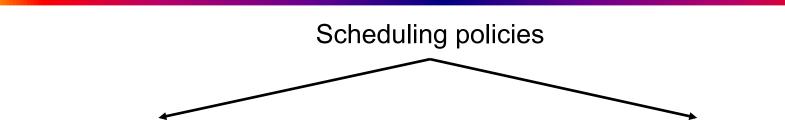
Synchronized schedulers

With access probabilities (e.g., for timeslotted systems)

$$\mathbf{a} = \{a_l\}_{l=1}^M, \sum_{i=1}^M a_i \le 1$$

- Source l gains channel access after a packet transmission with a probability a_l
 - Pros:
 - Good performance
 - No collision
 - Cons:
 - Require coordination overhead
 - Not implementable in case of:
 - Dense networks
 - Non-constant transmission times
- Ex.:[Talak, Karaman, Modiano 2018]

- Focus of our work
- Pros:
 - No coordination overhead
 - No restriction on transmission time distributions
- Cons:
 - Collision occurs due to non-zero sensing time
 - Collision increases Aol and energy consumption



Synchronized schedulers

With access probabilities (e.g., for timeslotted systems)

$$\mathbf{a} = \{a_l\}_{l=1}^M, \sum_{i=1}^M a_i \le 1$$

- Source l gains channel access after a packet transmission with a probability a_l
 - Pros:
 - Good performance
 - No collision
 - Cons:
 - Require coordination overhead
 - Not implementable in case of:
 - Dense networks
 - Non-constant transmission times
- Ex.: [Talak, Karaman, Modiano 2018]

- Focus of our work
- Pros:
 - No coordination overhead
 - No restriction on transmission time distributions
- Cons:
 - Collision occurs due to non-zero sensing time
 - Collision increases Aol and energy consumption
- Ex: CSMA to minimize Aol
- [Maatouk, Assaad, Ephremides 2019]
- [Wang, Dong 2019]
 - No energy constraint
 - Zero sensing time
 - Some distributions for transmission times

Q: How to Model Energy Cost of Collisions and Target Lifetime?

- Source l equipped with a Battery with initial level of B_l
- Source l has a target lifetime D_l : Minimum time duration before the battery is depleted
- Source l Average energy replenishment rate R_l
- Maximum allowable energy consumption rate for transmissions

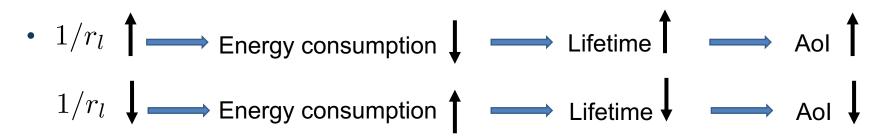
$$E_{\mathrm{con},l} = \frac{B_l}{D_l} + R_l$$

- Source l fraction of time transmitting update packets σ_l
- Source l average energy consumption rate in the transmission mode $E_{\text{avg},l}$

$$\sigma_l E_{\mathrm{avg},l} \le E_{\mathrm{con},l} \qquad \longrightarrow \quad \sigma_l \le E_{\mathrm{con},l} / E_{\mathrm{avg},l} = b_l$$

 b_l : The target energy efficiency of source l

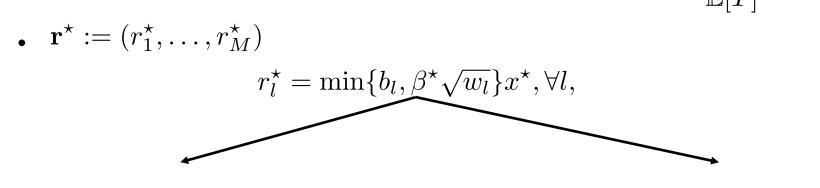
Q: How to Minimize the AoI with Energy (Battery Lifetime) Constraints?



Target: Design r_l 's s.t. $\bar{\Delta}_{\text{opt}}^{\text{w-peak}} \triangleq \min_{r_l > 0} \sum_{l=1}^{m} w_l \mathbb{E}[\Delta_l^{\text{peak}}]$ Δ_l^{Peak} : Peak age of source l w_l : Weight of source ls.t. $\sigma_l < b_l, \forall l$, $\bar{\Delta}_{\text{opt}}^{\text{w-peak}} \triangleq \min_{r_l > 0} \sum_{l=1}^{M} \frac{w_l e^{-r_l \frac{t_s}{\mathbb{E}[T]}}}{r_l} e^{\sum_{i=1}^{M} r_i \frac{t_s}{\mathbb{E}[T]}} \left(1 + \sum_{i=1}^{M} r_i\right) + \sum_{l=1}^{M} w_l$ Non-convex optimization problem s.t. $\frac{\left[1 - e^{-r_l \frac{t_s}{\mathbb{E}[T]}}\right] \sum_{i=1}^{M} r_i + r_l e^{-r_l \frac{t_s}{\mathbb{E}[T]}}}{\sum_{i=1}^{M} r_i + 1} \le b_l, \forall l,$ (non-convex constraints)

Q: How to Minimize the Aol with Energy (Battery Lifetime) Constraints? (Cont.)

• Derive a low-complexity solution \rightarrow Near-optimal when $\frac{t_s}{\mathbb{E}[T]}$ is small

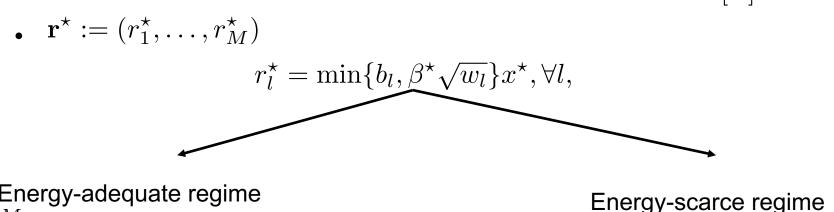


Energy-adequate regime

Energy-scarce regime

Q: How to Minimize the Aol with Energy (Battery Lifetime) Constraints? (Cont.)

• Derive a low-complexity solution \rightarrow Near-optimal when $\frac{t_s}{\mathbb{E}[T]}$ is small



Energy-adequate regime $\sum_{i=1}^{M} b_i \ge 1$

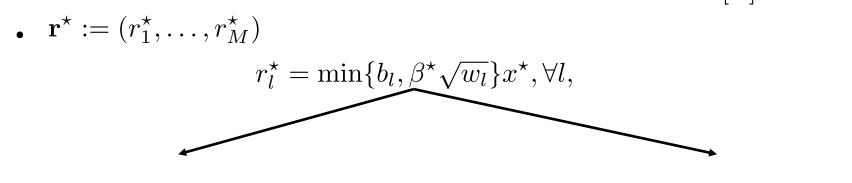
• Sufficient energy to ensure that at least one source is awake at any time

$$\beta^{\star}$$
: the root of
 $\sum_{i=1}^{M} \min\{b_i, \beta^{\star}\sqrt{w_i}\} = 1$

$$x^{\star} = \frac{-1}{2} + \sqrt{\frac{1}{4} + \frac{\mathbb{E}[T]}{t_s}},$$

Q: How to Minimize the Aol with Energy (Battery Lifetime) Constraints? (Cont.)

• Derive a low-complexity solution \rightarrow Near-optimal when $\frac{t_s}{\mathbb{E}[T]}$ is small



Energy-adequate regime $\sum_{i=1}^{M} b_i \ge 1$

• Sufficient energy to ensure that at least one source is awake at any time

$$\beta^{\star}$$
: the root of
 $\sum_{i=1}^{M} \min\{b_i, \beta^{\star}\sqrt{w_i}\} = 1$

$$x^{\star} = \frac{-1}{2} + \sqrt{\frac{1}{4} + \frac{\mathbb{E}[T]}{t_s}},$$

Energy-scarce regime $\sum_{i=1}^{M} b_i < 1$

• Sources have to sleep for some time to meet the sources' energy constraints

$$x^{\star} = \frac{\min_{l} c_{l}}{1 - \sum_{i=1}^{M} b_{i}}, \ \beta^{\star} = \sum_{i=1}^{M} \frac{1}{\sqrt{w_{i}}}$$
$$c_{l} = \frac{2b_{l} \left(1 - \sum_{i=1}^{M} b_{i}\right)^{2}}{Q}$$
$$Q = b_{l} \left(1 - \sum_{i=1}^{M} b_{i}\right)^{2}$$
$$+ \sqrt{b_{l}^{2} \left(1 - \sum_{i=1}^{M} b_{i}\right)^{4} + 4b_{l}^{2} \left(1 - \sum_{i=1}^{M} b_{i}\right)^{2} \left(\sum_{i=1}^{M} b_{i} - b_{l}\right) \frac{t_{s}}{\mathbb{E}[T]}} 13$$

Main Results

Theorem:

• Our solution is near-optimal when $\frac{t_s}{\mathbb{E}[T]}$ is sufficiently small, i.e.,

• If
$$\sum_{i=1}^{M} b_i \ge 1$$
, $\left| \bar{\Delta}^{\text{w-peak}}(\mathbf{r}^{\star}) - \bar{\Delta}_{\text{opt}}^{\text{w-peak}} \right| \le 2\sqrt{\frac{t_s}{\mathbb{E}[T]}} C_1 + o\left(\sqrt{\frac{t_s}{\mathbb{E}[T]}}\right)$

• If
$$\sum_{i=1}^{M} b_i < 1$$
, $\left| \bar{\Delta}^{\text{w-peak}}(\mathbf{r}^{\star}) - \bar{\Delta}_{\text{opt}}^{\text{w-peak}} \right| \le \frac{t_s}{\mathbb{E}[T]} C_2 + o\left(\frac{t_s}{\mathbb{E}[T]}\right)$

 C_1, C_2 : Constants

• Our solution is asymptotically optimal as $\frac{t_s}{\mathbb{E}[T]} \to 0$, i.e.,

$$\lim_{\substack{t_s \\ \mathbb{E}[T]} \to 0} \left| \bar{\Delta}^{\text{w-peak}}(\mathbf{r}^{\star}) - \bar{\Delta}^{\text{w-peak}}_{\text{opt}} \right| = 0$$

Main Results

Corollary: the performance of our proposed algorithm is asymptotically no worse than any synchronized scheduler, i.e., we have

$$\lim_{\substack{t_s \\ \overline{\mathbb{E}[T]} \to 0}} \bar{\Delta}_{opt}^{\text{w-peak}} = \bar{\Delta}_{opt-s}^{\text{w-peak}}$$

 $\bar{\Delta}_{\rm opt-s}^{\rm w-peak}:$ Optimal weighted average peak age for synchronized scheduler

- Step1:
 - Check the feasibility of the solution: (Satisfying the energy constraint)
 - Construct an upper bound: Substitute our solution into the obj. function

Proof Steps

- Step1:
 - Check the feasibility of the solution: (Satisfying the energy constraint)
 - Construct an upper bound: Substitute our solution into the obj. function
- Step 2:
 - Construct a lower bound by relaxing the constraints

$$\begin{split} \min_{r_{l}>0} & \sum_{l=1}^{M} \frac{w_{l} e^{-r_{l} \frac{t_{s}}{\mathbb{E}[T]}}}{r_{l}} e^{\sum_{i=1}^{M} r_{i} \frac{t_{s}}{\mathbb{E}[T]}} \left(1 + \sum_{i=1}^{M} r_{i}\right) + \sum_{l=1}^{M} w_{l} \\ \text{s.t.} \frac{\left[1 - e^{-r_{l} \frac{t_{s}}{\mathbb{E}[T]}}\right] \sum_{i=1}^{M} r_{i} + r_{l} e^{-r_{l} \frac{t_{s}}{\mathbb{E}[T]}}}{\sum_{i=1}^{M} r_{i} + 1} \leq b_{l}, \forall l, \\ & \prod_{r_{l}>0} \sum_{l=1}^{M} \frac{w_{l} e^{-r_{l} \frac{t_{s}}{\mathbb{E}[T]}}}{r_{l}} e^{\sum_{i=1}^{M} r_{i} \frac{t_{s}}{\mathbb{E}[T]}} \left(1 + \sum_{i=1}^{M} r_{i}\right) + \sum_{l=1}^{M} w_{l} \\ \text{s.t.} \ r_{l} \leq b_{l} \left(\sum_{i=1}^{M} r_{i} + 1\right), \forall l, \end{split}$$

Proof Steps (Cont.)

- Step 3:
 - Analysis the gap between the upper and lower bounds
 - This characterizes the sub-optimality gap of our solution

Easy Implementation

• Uniform solution formula for both energy regimes

$$r_l^{\star} = \min\{b_l, \beta^{\star} \sqrt{w_l}\} x^{\star}, \forall l,$$

- Each source just needs $\beta^{\star} \& x^{\star}$ to compute its sleeping period parameter
- $\beta^{\star} \& x^{\star}$ are functions of $\{(w_i, b_i)_{i=1}^M, t_s/\mathbb{E}[T]\}$

Algorithm 1: Implementation of sleep-wake scheduler.

1 The AP gathers the parameters
$$\{(w_i, b_i)_{i=1}^M, t_s/\mathbb{E}[T]\};$$

2 if $\sum_{i=1}^M b_i \ge 1$ then
3 | The AP derives x^* , β^* according to (19) and (20); \longrightarrow Energy-adequate regime formulas
4 else
5 | The AP derives x^* , β^* according to (25) - (27); \longrightarrow Energy-scarce regime formulas
6 end
7 The AP broadcasts x^* , β^* to all the *M* sources;
8 Upon hearing x^* , β^* , source *l* compute r_l^* from (18);

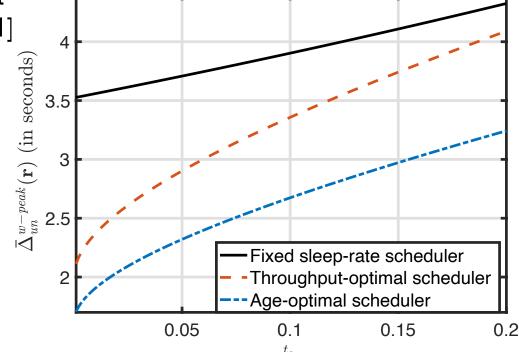
Simulation Results

Fixed-rate: Fixed rates for all sources

Throughput-optimal: Throughput sleep-wake optimal scheduler in [1]

Simulation settings:

- $\mathbb{E}[T] = 5 \text{ ms}$
- w_l 's are uniformly in [0, 10]
- M = 10 sources
- b_l 's are uniformly in [0, 1]



 $\overline{\mathbf{E}[\mathbf{T}]}$

Observations:

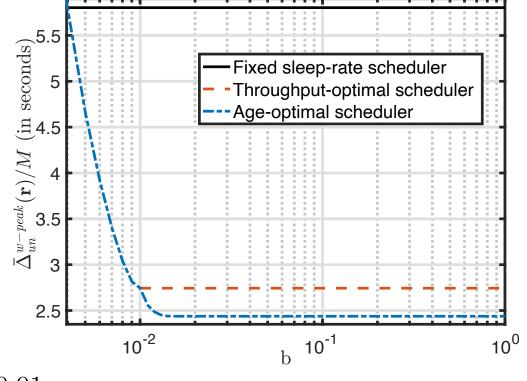
- 1. t_s increases \rightarrow Packet collision increases \rightarrow Aol increases
- 2. Age-optimal scheduler outperforms other policies (Throughput optimal scheduler is not necessarily age-optimal)

[1] S. Chen, T. Bansal, Y. Sun, P. Sinha, and N. B. Shroff. 2013. Life-Add: Lifetime Adjustable design for WiFi networks with heterogeneous energy supplies. In Proc. WiOpt. 508–515.

Simulation Results (Cont.)

Simulation settings:

- $\mathbb{E}[T] = 5 \text{ ms}$
- w_l 's are uniformly in [0, 10]
- M = 100 sources
- $b_l = b \ \forall l$



Note: Throughput-optimal scheduler is not feasible for $b \le 0.01$

Observations: $r_l^{\star} = \min\{b_l, \beta^{\star}\sqrt{w_l}\}x^{\star}, \forall l,$

- 1. There is a value for b after which \mathbf{r}^{\star} is a function solely of w_l 's & β^{\star}
- 2. Age-optimal scheduler outperforms other policies (Throughput optimal scheduler is not necessarily age-optimal)

Simulation Results (Cont.)

Simulation settings:

- $\mathbb{E}[T] = 5 \text{ ms}$
- w_l 's are uniformly in [0, 2]
- $M = 10^5$ sources (dense netw)
- $B_l = 8 \text{ mAh}, V_{\text{out}} = 5 \text{ Volt},$ $E_{\text{cons},l} = 24.75 \text{ mW}, \forall l$

0.4 $(smoq ui) W/(x)_{yood} under = 5$ 0.35 $W/(x)_{yood} under = 0.25$ 0.15 5 10 15 20 25 25 30D (in years)

• $D_l = D, \forall l$ (Target lifetime) **Note:** Throughput-optimal scheduler is not feasible for D > 18 years

Observations:

- 1. *D* increases \rightarrow Sleeping periods increases \rightarrow Aol increases
- 2. Age-optimal scheduler can be active for 25 years with a decent average peak age of 0.2 hour, i.e., 12 minutes.
- 3. Age-optimal scheduler outperforms other policies

- Target: Efficient sleep-wake mechanism to attain optimal trade-off between minimizing AoI and energy consumption
- Optimization problem is non-convex
- Providing a near-optimal solution when $\frac{t_s}{\mathbb{E}[T]}$ is a sufficiently small
- Providing an easy implementation of our solution
- Our solution is asymptotically no worse than any synchronized scheduler

Q&A

Thanks

