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ABSTRACT
In this paper, we consider the problem of minimizing the age of
information in a multi-source system, where samples are taken from

multiple sources and sent to a destination via a channel with ran-

dom delay. Due to interference, only one source can be scheduled at

a time. We consider the problem of finding a decision policy that de-

termines the sampling times and transmission order of the sources

for minimizing the total average peak age (TaPA) and the total

average age (TaA) of the sources. Our investigation of this problem

results in an important separation principle: The optimal scheduling

strategy and the optimal sampling strategy are independent of each

other. In particular, we prove that, for any given sampling strategy,

the Maximum Age First (MAF) scheduling strategy provides the

best age performance among all scheduling strategies. This trans-

forms our overall optimization problem into an optimal sampling

problem, given that the decision policy follows the MAF schedul-

ing strategy. While the zero-wait sampling strategy (in which a

sample is generated once the channel becomes idle) is shown to be

optimal for minimizing the TaPA, it does not always minimize the

TaA. We use Dynamic Programming (DP) to investigate the optimal

sampling problem for minimizing the TaA. Finally, we provide an

approximate analysis of Bellman’s equation to approximate the

TaA-optimal sampling strategy by a water-filling solution which is

shown to be very close to optimal through numerical evaluations.
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1 INTRODUCTION
In recent years, significant attention has been paid to the age of
information as a metric for data freshness. This is because there are

a growing number of applications that require timely status updates

in a variety of networkedmonitoring and control systems. Examples

include sensor and environment monitoring networks, surrounding

monitoring autonomous vehicles, smart grid systems, etc. The age

of information, or simply age, was introduced in [1, 10, 12, 22],

and defined as the time elapsed since the most recently received

update was generated. Unlike traditional packet-basedmetrics, such

as throughput and delay, age is a destination-based metric that

captures the information lag at the destination, and is hence more

suitable in achieving the goal of timely updates.

Early studies characterized the age in many interesting variants

of queueing models [11, 16, 21–23, 25, 29, 42], in which the update

packets arrive at the queue randomly as a Poisson process. Besides

these queueing theoretic studies, the work in [4–7] showed that Last

Generated First Served (LGFS)-type policies are (nearly) optimal

for minimizing any non-decreasing functional of the age process in

single flowmulti-server and multi-hop networks. These results hold

for general system settings that include arbitrary packet generation

at the source and arbitrary packet arrival times at the transmitter

queue. A generalization of these results was later considered in [34]

for multi-flow multi-server queueing systems, under the condition

that the packet generation and arrival times are synchronized across

the flows.

Another line of research has considered the “generate-at-will"

model [2, 31, 32, 35, 41], in which the generation times (sampling

times) of the update packets are controllable. The work in [31, 32,

https://doi.org/10.1145/3323679.3326510
https://doi.org/10.1145/3323679.3326510
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Figure 1: System model

35] motivated the usage of nonlinear age functions from various

real-time applications and designed sampling policies for optimiz-

ing nonlinear age functions in single source systems. Our study

here extends the work in [31, 32, 35] by considering a multi-source

information update system, as shown in Fig. 1, where sources send

their update packets to the destination through a channel. Due to

the resource limitation (only one source can send a packet through

the channel at a time), a decision maker not only controls the packet

generation times, but also schedules the source transmission order.

Thus, the multi-source case is more challenging.

The scheduling problem for multi-source networks with different

scenarios was considered in [13–15, 17–19, 24, 36–39, 43]. In [13],

the authors found that the scheduling problem for minimizing the

age in wireless networks under physical interference constraints is

NP-hard. Optimal scheduling for age minimization in a broadcast

network was studied in [14, 15, 17–19], where a single source can be

scheduled at a time. In contrast to our study, the generation of the

update packets in [13–15, 17–19, 24] is uncontrollable and they ar-

rive randomly at the transmitter. Age analysis of the status updates

over a multiaccess channel was considered in [43]. The studies in

[36–39] considered the age optimization problem in wireless net-

work with general interference constraints and channel uncertainty.

The considered sources in [36–39, 43] are active such that they can

generate a new packet for each transmission (active sources are

equivalent to zero-wait sampling strategy in our model, where a

packet is generated from a source once this source is scheduled).

Moreover, all the aforementioned studies for multi-source schedul-

ing considered a time-slotted system, where a packet is transmitted

in one time slot (i.e., a deterministic transmission time). Our inves-

tigation in this paper reveals that the zero-wait sampling strategy

does not always minimize the age (the TaA in particular) in multi-

source networks with random transmission times (which could be

more than one time slot). Thus, our work here complements the

studies in [13–15, 17–19, 36–39, 43] by answering the following

important question: What is the optimal policy that controls the

packet generation times and the source scheduling to minimize

the age in a multi-source information update system with random

transmission times? To that end, the main contributions of this

paper are outlined as follows:

• We formulate the problem of finding the optimal policy that

controls the sampling and scheduling strategies to minimize

two age of information metrics, namely the total average

peak age (TaPA) and the total average age (TaA). We show

that our optimization problem has an important separation
principle: The optimal sampling strategy and the optimal

scheduling strategy can be designed independently of each

other. In particular, we use the stochastic ordering technique

to show that, for any given sampling strategy, the Maximum

Age First (MAF) scheduling strategy provides a better age

performance compared to any other scheduling strategy

(Proposition 3.2). This separation principle helps us shrink
our decision policy space and transform our complicated

optimization problem into an optimal sampling problem

for minimizing the TaPA and TaA by fixing the scheduling

strategy to the MAF strategy.

• We formulate the optimal sampling problem for minimizing

the TaPA. We show that the zero-wait sampling strategy is

the optimal one in this case (Proposition 3.3). Hence, the

MAF scheduling strategy and zero-wait sampling strategy

are jointly optimal for minimizing the TaPA (Theorem 3.4).

However, interestingly, we find that the zero-wait sampling

strategy does not always minimize the TaA.

• We map the optimal sampling problem for minimizing the

TaA into an equivalent optimization problem which then

enables us to use Dynamic Programming (DP) to obtain the

optimal sampling strategy. We show that there exists a sta-

tionary deterministic sampling strategy that can achieve

optimality (Proposition 3.6). Moreover, we show that the

optimal sampling strategy has a threshold property (Proposi-

tion 3.7) that helps in reducing the complexity of the relative

value iteration (RVI) algorithm (by reducing the computa-

tions required along the system state space). This results in

the threshold-based sampling strategy in Algorithm 1. There-

fore, the MAF scheduling strategy and the threshold-based

sampling strategy are jointly optimal for minimizing the TaA

(Theorem 3.8).

• Finally, in Section 4, we provide an approximate analysis of

Bellman’s equation whose solution is the threshold-based

sampling strategy. We figure out that the water-filling solu-

tion can approximate this optimal sampling strategy. More-

over, the numerical result in Fig. 5 shows that the perfor-

mance of the water-filling solution is almost the same as that

of the threshold-based sampling strategy.

Our optimal scheduling and sampling strategies can minimize the

age for any random discrete transmission times which possibly

can be more than one time slot. Because of the randomness of the

transmission times, our model belongs to the class of semi-Markov

decision problems (SMDPs). Prior studies, such as [13–15, 17–19, 36–

39, 43], considered time-slotted system. Therefore, their models be-

long to the class ofMarkov decision problems (MDPs), which cannot

handle our model. Moreover, although the optimality of the MAF

scheduler was shown in [15, 18, 19, 24, 34], these studies either con-

sidered a time-slotted system [15, 18, 19, 24], or stochastic arrivals

with exponential and New-Better-than-Used (NBU) transmission

times [34]. In contrast, our results are obtained by generalizing the

transmission times and controlling the packet generation times. To

the best of our knowledge, this is the first study that considers the

joint optimization of the sampling and scheduling strategies to min-

imize the age in multi-source networks with random transmission

times.
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2 MODEL AND FORMULATION
2.1 Notations
For any random variable Z and an event A, let E[Z |A] denote the
conditional expectation ofZ for givenA. We useN+ to represent the
set of non-negative integers, R+ is the set of non-negative real num-

bers, R is the set of real numbers, and Rn is the set of n-dimensional

real Euclidean space.We use t− to denote the time instant just before

t . Let x = (x1,x2, . . . ,xn ) and y = (y1,y2, . . . ,yn ) be two vectors

in Rn , then we denote x ≤ y if xi ≤ yi for i = 1, 2, . . . ,n. Also,
we use x[i] to denote the i-th largest component of vector x. For
any bounded set X ⊂ R, we use maxX to represent the maximum

of set X, i.e., x∗ = maxX implies that x ≤ x∗ for all x ∈ X. A set

U ⊆ Rn is called upper if y ∈ U whenever y ≥ x and x ∈ U . We

will need the following definitions:

Definition 2.1. Univariate Stochastic Ordering: [30] Let X
and Y be two random variables. Then, X is said to be stochastically

smaller than Y (denoted as X ≤st Y ), if

P{X > x} ≤ P{Y > x}, ∀x ∈ R.

Definition 2.2. Multivariate Stochastic Ordering: [30] Let X
and Y be two random vectors. Then, X is said to be stochastically

smaller than Y (denoted as X ≤st Y), if

P{X ∈ U } ≤ P{Y ∈ U }, for all upper sets U ⊆ Rn .

Definition 2.3. Stochastic Ordering of Stochastic Processes:
[30] Let {X (t), t ∈ [0,∞)} and {Y (t), t ∈ [0,∞)} be two stochas-

tic processes. Then, {X (t), t ∈ [0,∞)} is said to be stochastically

smaller than {Y (t), t ∈ [0,∞)} (denoted by {X (t), t ∈ [0,∞)} ≤st

{Y (t), t ∈ [0,∞)}), if, for all choices of an integer n and t1 < t2 <
. . . < tn in [0,∞), it holds that

(X (t1),X (t2), . . . ,X (tn ))≤st (Y (t1),Y (t2), . . . ,Y (tn )), (1)

where the multivariate stochastic ordering in (1) was defined in

Definition 2.2.

2.2 System Model
We consider a status update system withm sources as shown in

Fig. 1, where each source observes a time-varying process. An

update packet is generated from a source and is then sent over an

error-free delay channel to the destination, where only one packet

can be sent at a time. A decision maker (a controller) controls the

generation times of the update packets and transmission order of

the sources. This is known as “generate-at-will” model [2, 35, 41]

(i.e., the decision maker can generate the update packets at any

time). We use Si to denote the generation time of the i-th generated

packet, called packet i . Moreover, we use ri to represent the source

index from which packet i is generated. The channel is modeled

as First-Come First-Served (FCFS) queue with random i.i.d. service
time Yi , where Yi represents the service time of packet i , Yi ∈ Y,

and Y ⊂ R+ is a finite and bounded set. We also assume that

0 < E[Yi ] < ∞ for all i . We suppose that the decision maker knows

the idle/busy state of the server through acknowledgments (ACKs)

from the destination with zero delay. To avoid unnecessary waiting

time in the queue, there is no need to generate an update packet

during the busy periods. Thus, a packet is served immediately once

t

∆l(t)

D1S1 S3 D3

Y1 Z2 Y3

D2

Figure 2: The age ∆l (t) of source l , where we suppose that
S1, S3 ∈ Gl .

it is generated. Let Di denote the delivery time of packet i , where
Di = Si + Yi . After the delivery of packet i at time Di , the decision

maker may insert a waiting time Zi before generating a new packet

(hence, Si+1 = Di + Zi )
1
, where Zi ∈ Z, and Z ⊂ R+ is a finite

and bounded set. We useM to represent the the maximum amount

of waiting time allowed by the system, i.e.,M = maxZ.

We use Gl to represent the set of generation times of the update

packets that are generated from source l . At any time t , the most

recently delivered packet from source l is generated at time

Ul (t) = max{Si ∈ Gl : Di ≤ t}. (2)

The age of information, or simply the age, for source l is defined as

[1, 10, 12, 22]

∆l (t) = t −Ul (t). (3)

As shown in Fig. 2, the age increases linearly with t but is reset to
a smaller value with the delivery of a fresher packet. We suppose

that the age ∆l (t) is right-continuous. The age process for source
l is given by {∆l (t), t ≥ 0}. We suppose that the initial age values

(∆l (0
−) for all l ) are known to the system.

2.3 Decision Policies
A decision policy, denoted byd , specifies the following: i) the source
scheduling strategy, denoted by π , that determines the source to

be served at each transmission opportunity π ≜ (r1, r2, . . .), ii) the

sampling strategy, denoted by f , that controls the packet generation
times f ≜ (S1, S2, . . .), or equivalently, the sequence of waiting

times f ≜ (Z0,Z1, . . .). Hence, d = (π , f ) implies that a decision

policyd follows the scheduling strategy π and the sampling strategy

f . LetD denote the set of causal decision policies inwhich decisions

are made based on the history and current states of the system.

Observe that D consists of Π and F , where Π and F are the sets

of causal scheduling and sampling strategies, respectively.

After each delivery, the decision maker chooses the source to

be served, and imposes a waiting time before the generation of the

new packet. Next, we present our optimization problems.

2.4 Optimization Problem
We define two metrics to assess the long term age performance

over our status update system in (4) and (5). Consider the time

1
We suppose that D0 = 0. Thus, we have S1 = Z0 .
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interval [0,Dn ]. For any decision policy d = (π , f ), we define the
total average peak age (TaPA) as

∆
peak

(π , f ) = lim sup

n→∞

1

n
E

[ n∑
i=1

∆ri (D
−
i )

]
, (4)

and the total average age per unit time (TaA) as

∆avg(π , f ) = lim sup

n→∞

E
[∑m

l=1

∫ Dn
0

∆l (t)dt
]

E [Dn ]
. (5)

In this paper, we aim to minimize both the TaPA and the TaA

separately. Thus, our optimization problems can be formulated

as follows. We seek a decision policy d = (π , f ) that solves the
following optimization problems

∆̄
peak-opt

≜ min

π ∈Π,f ∈F
∆
peak

(π , f ), (6)

and

∆̄avg-opt ≜ min

π ∈Π,f ∈F
∆avg(π , f ), (7)

where ∆̄
peak-opt

and ∆̄avg-opt are the optimum objective values of

Problems (6) and (7), respectively. Due to the large decision policy

space, the optimization problem is quite challenging. In particular,

we need to seek the optimal decision policy that controls both the

sampling and scheduling strategies to minimize the TaPA and the

TaA. On the one hand, the TaPA metric is more suitable for the ap-

plications that have an upper bound restriction on age. On the other

hand, it was recently shown that, under certain conditions, infor-

mation freshness measures expressed in terms of auto-correlation

functions, the estimation error of signal values, and mutual informa-

tion, are monotonic functions of the age [32]. The optimal solution

that we develop for minimizing TaA can be generalized to optimize

the total time-average of monotonic age functions, which are useful

for these applications. In the next section, we discuss our approach

to tackle these optimization problems.

3 OPTIMAL DECISION POLICY
We first show that our optimization problems in (6) and (7) have

an important separation principle: The scheduling strategy and the

sampling strategy can be designed independently of each other.

To that end, we show that, given the generation times of the up-

date packets, following the Maximum Age First (MAF) scheduling

strategy provides the best age performance compared to following

any other scheduling strategy. What then remains to be addressed

is the question of finding the best sampling strategies that solve

Problems (6) and (7). Next, we present our approach to solve our

optimization problems in detail.

3.1 Optimal Scheduling Strategy
We start by defining the MAF scheduling strategy as follows:

Definition 3.1 ([15, 18, 19, 24, 34]). MaximumAge First scheduling

strategy: In this scheduling strategy, the source with the maximum

age is served the first among all sources. Ties are broken arbitrarily.

For simplicity, let πMAF represent the MAF scheduling strategy.

The age performance resulting from following πMAF strategy is

characterized as follows.

Proposition 3.2. For any given sampling strategy f ∈ F , the
MAF scheduling strategy minimizes the TaPA and the TaA in (4)

and (5), respectively, among all scheduling strategies in Π, i.e., for all
f ∈ F and π ∈ Π,

∆peak(πMAF, f ) ≤ ∆peak(π , f ), (8)

∆avg(πMAF, f ) ≤ ∆avg(π , f ). (9)

Proof. One of the key ideas of the proof is as follows. Given any

sampling strategy, that controls the generation times of the update

packets, we only control from which source a packet is generated.

We couple the policies such that the packet delivery times are fixed

under all decision policies. Since we follow the MAF scheduling

strategy, after each delivery, a source with maximum age becomes

the source with minimum age among them sources. Under any

arbitrary scheduling strategy, a packet can be generated from any

source, which is not necessary the one with maximum age, and

the chosen source becomes the one with minimum age among the

m sources after the delivery. Thus, following the MAF scheduling

strategy provides a better age performance compared to following

any other scheduling strategy. For details, see Appendix A. □

Proposition 3.2 is proven by using a sample-path proof technique

that was recently developed in [34]. The difference is that in [34]

the authors proved the results for symmetrical packet generation

and arrival processes, while we consider here that the sampling

times are controllable. We found that the same proof technique

applies to both cases.

Remark 1. The result in Proposition 3.2 can be extended to more

general Y and Z, i.e., Y and Z can be any uncountable sets. In

other words, Proposition 3.2 holds for any arbitrary distributed

service times, including continuous service times. This is because

the proof of Proposition 3.2 does not depend on the service time

distribution.

Proposition 3.2 helps us conclude the separation principle that

the optimal sampling strategy can be designed independently of

the optimal scheduling strategy. In particular, we are able to fix the

scheduling strategy to the MAF strategy, and the remaining task is

to search for the optimal sampling strategy. Hence, the optimization

problems (6) and (7) reduce to the following

∆̄
peak-opt

≜ min

f ∈F
∆
peak

(πMAF, f ), (10)

∆̄avg-opt ≜ min

f ∈F
∆avg(πMAF, f ). (11)

Next, we seek the optimal sampling strategy for Problems (10) and

(11). Without a confusion, we will use the term “sampling policy" or

“sampler" to denote the sampling strategy that a decision policy can

follow. Similarly, we use the term “scheduling policy" or “scheduler”

to denote the scheduling strategy that a decision policy can follow.

3.2 Optimal Sampler for Problem (10)

By fixing the scheduling policy to the MAF scheduler, the evolution

of the age processes of the sources is as follows. The sampler may

impose a waiting time Zi before generating packet i + 1 at time

Si+1 = Di + Zi from the source with the maximum age at time

t = Di . Packet i + 1 is delivered at time Di+1 = Si+1 +Yi+1 and the

age of the sourcewithmaximum age drops to theminimum agewith
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(a) The age evolution of source 1.
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S2 D2

Y2 Z2 Y3

S4 D4

Z3 Y4
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Q20

a20 a21
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(b) The age evolution of source 2.

Figure 3: The age processes evolution of the MAF scheduler in a two-sources information update system. Source 2 has a higher
initial age than Source 1. Thus, Source 2 starts service and packet 1 is generated from Source 2, which is delivered at time D1.
Then, Source 1 is served and packet 2 is generated from Source 1, which is delivered at timeD2. The same operation is repeated
over time.

the value of Yi+1, while the age processes of other sources increase

linearly with time without change. This operation is repeated with

time and the age processes evolve accordingly. An example of age

processes evolution is shown in Fig. 3. Next, we show that the

zero-wait sampler minimize the TaPA.

Proposition 3.3. The optimal sampler for Problem (10) is the
zero-wait sampler, i.e., Zi = 0 for all i .

Proof. We prove Proposition 3.3 by showing that the TaPA is

an increasing function of the packets waiting times Zi ’s. For details,
see our technical report [3]. □

Remark 2. Similar to Proposition 3.2, the result in Proposition

3.3 can be extended to more general Y and Z, i.e., Y and Z can

be any uncountable bounded sets.

In conclusion, the optimal solution for Problem (6) is manifested

in the following theorem.

Theorem 3.4. The optimal solution for Problem (6) is the MAF
scheduler and the zero-wait sampler.

Proof. The theorem follows directly from Proposition 3.2 and

Proposition 3.3. □

3.3 Optimal Sampler for Problem (11)

Although the zero-wait sampler is the optimal sampler for minimiz-

ing the TaPA, it is not clear whether it also minimizes the TaA. This

is because the latter metric may not be a non-decreasing function

of the waiting times as we will see later, which makes Problem (11)

more challenging. Next, we derive the TaA when the MAF sched-

uler is followed and provide an equivalent mapping for Problem

(11).

3.3.1 Equivalent Mapping of Problem (11). We start by deriving

the TaA when the scheduling policy is fixed to the MAF sched-

uler. We decompose the area under each curve ∆l (t) into a sum

of disjoint geometric parts. Observing Fig. 3, this area in the time

interval [0,Dn ], where Dn =
∑n−1

i=0
Zi + Yi+1, can be seen as the

concatenation of the areas Ql i , 0 ≤ i ≤ n − 1. Thus, we have∫ Dn

0

∆l (t)dt =
n−1∑
i=0

Ql i . (12)

Recall that we use al i to denote the age value for the source l at time

Di , i.e., al i = ∆l (Di ). Then, as seen in Fig. 3, Ql i can be expressed

as

Ql i = al i (Zi + Yi+1) +
1

2

(Zi + Yi+1)
2. (13)

Using this with (12), we get

m∑
l=1

∫ Dn

0

∆l (t)dt =
n−1∑
i=0

Ai (Zi + Yi+1) +
m

2

(Zi + Yi+1)
2, (14)

where Ai =
∑m
l=1

al i . The TaA can be written as

lim sup

n→∞

∑n−1

i=0
E
[
Ai (Zi + Yi+1) +

m
2
(Zi + Yi+1)

2
]∑n−1

i=0
E [Zi + Yi+1]

. (15)

Using this, the optimal sampling problem for minimizing the TaA,

given that the scheduling policy is fixed to the MAF scheduler, can

be formulated as

∆̄avg-opt ≜min

f ∈F
lim sup

n→∞

∑n−1

i=0
E
[
Ai (Zi+Yi+1)+

m
2
(Zi+Yi+1)

2
]∑n−1

i=0
E[Zi+Yi+1]

. (16)

SinceZ and Y are bounded, ∆̄avg-opt is bounded as well. Note that

Problem (16) is hard to solve in the current form. Therefore, we

provide an equivalent mapping for it. We consider the following

optimization problem with a parameter β ≥ 0:

p(β)≜min

f ∈F
lim sup

n→∞

1

n

n−1∑
i=0

E
[
(Ai−β)(Zi+Yi+1)+

m

2

(Zi+Yi+1)
2

]
, (17)

where p (β) is the optimal value of (17).

Lemma 3.5. The following assertions are true:
(i). ∆̄avg-opt ⪋ β if and only if p(β) ⪋ 0.
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(ii). If p(β) = 0, then the optimal sampling policies that solve (16)
and (17) are identical.

Proof. The proof of Lemma 3.5 is similar to the proof of [33,

Lemma 2]. The difference is that the regenerative property of the

inter-sampling times is used to prove the result in [33]; instead, we

use the boundedness of the inter-sampling times to prove the result.

For the sake of completeness, we modify the proof accordingly and

provide it in our technical report [3]. □

As a result of Lemma 3.5, the solution to (16) can be obtained by

solving (17) and seeking a β = ∆̄avg-opt ≥ 0 such that p(∆̄avg-opt) =

0. Lemma 3.5 helps us formulate our optimization problem as a DP

problem. Note that without Lemma 3.5, it would be quite difficult

to formulate (16) as DP problem or solve it optimally. Next, we use

the DP technique to solve Problem (17).

3.3.2 The DP problem of (17). Following the methodology pro-

posed in [8], when β = ∆̄avg-opt, Problem (17) is equivalent to an

average cost per stage DP problem. According to [8], we describe

the components of our DP problem in detail below.

• States: At stage2 i , the system state is specified by

s(i) = (a[1]i , . . . ,a[m]i ). (18)

We use S to denote the state-space including all possible

states. Notice that S is finite and bounded because Z and

Y are finite and bounded. Also, this implies that Ai ’s are
uniformly bounded, i.e., there exists Λ ∈ R+ such that Ai ≤
Λ for all i .

• Control action: At stage i , the action that is taken by the

sampler is Zi ∈ Z. Recall that Zi ≤ M for all i ≥ 0.

• Random disturbance: In our model, the random distur-

bance occurring at stage i is Yi+1, which is independent of

the system state and the control action.

• Transition probabilities: If the control Zi = z is applied

at stage i and the service time of packet i + 1 is Yi+1 = y,
then the evolution of the system state from s(i) to s(i + 1) is

as follows.

a[m]i+1
= y,

a[l ]i+1
= a[l+1]i + z + y, l = 1, . . . ,m − 1.

(19)

We let Pss′(z) denote the transition probabilities

Pss′(z) = P(s(i + 1) = s′ |s(i) = s,Zi = z), s, s′ ∈ S.

When s = (a[1], . . . ,a[m]) and s′ = (a′
[1]
, . . . ,a′

[m]
), the law

of the transition probability is given by

Pss′(z) =


P(Yi+1 = y) if a′

[m]
= y and

a′
[l ] = a[l+1] + z + y for l ,m;

0 else.

(20)

• Cost Function: Each time the system is in stage i and con-

trol Zi is applied, we incur a cost

C(s(i),Zi ,Yi+1) =(Ai − ∆̄avg-opt)(Zi + Yi+1)+

m

2

(Z 2

i + 2ZiYi+1 + Y
2

i+1
).

(21)

2
From henceforward, we assume that the duration of stage i is [Di , Di+1).

To simplify notation, we use the expected cost C(s(i),Zi ) as
the cost per stage, i.e.,

C(s(i),Zi ) = EYi+1
[C(s(i),Zi ,Yi+1)] , (22)

where EYi+1
is the expectation with respect to Yi+1. Hence,

we have

C(s(i),Zi ) =(Ai − ∆̄avg-opt)(Zi + E[Y ])+

m

2

(Z 2

i + 2ZiE[Y ] + E
[
Y 2

]
),

(23)

where we have used the fact that Zi and Yi+1 are indepen-

dent, and the random variable Y has the same distribution

as the service times Yi ’s. It is important to note that there

exists c ∈ R+ such that |C(s(i),Zi )| ≤ c for all s(i) ∈ S and

Zi ∈ Z. This is because Z, Y, S, and ∆̄avg-opt are bounded.

In general, the average cost per stage under a sampling policy

f ∈ F is given by

lim sup

n→∞

1

n
E

[n−1∑
i=0

C(s(i),Zi )

]
. (24)

We say that a sampling policy f ∈ F is average-optimal if it min-

imizes the average cost per stage in (24). Our objective is to find

the average-optimal sampling policy. A policy f is called history-

dependent if the controlZi depends on the entire past history, i.e., it
depends on s(0), . . . , s(i) and Z0, . . . ,Zi−1. A policy is stationary if

Zi = Z j whenever s(i) = s(j) for any i , j . In addition, a randomized

policy assigns a probability distribution over the control set such

that it chooses a control randomly according to this distribution,

while a deterministic policy selects an action with certainty. Ac-

cording to [8], there may not exist a stationary deterministic policy

that is average-optimal. In the next proposition, we show that there

is actually a stationary deterministic policy that is average-optimal

to our problem.

Proposition 3.6. There exist a scalar λ and a function h that
satisfy the following Bellman’s equation

λ + h(s) = min

z∈Z

[
C(s, z) +

∑
s′∈S

Pss′(z)h(s′)

]
, (25)

where λ is the optimal average cost per stage that is independent of
the initial state s(0) and satisfies

λ = lim

α→1

(1 − α)Jα (s),∀s ∈ S, (26)

and h(s) is the relative cost function that, for any state o, satisfies

h(s) = lim

α→1

(Jα (s) − Jα (o)),∀s ∈ S, (27)

where Jα (s) is the optimal total expected α-discounted cost function,
which is defined by

Jα (s) = min

f ∈F
lim sup

n→∞
E

[n−1∑
i=0

α iC(s(i),Zi )

]
, s(0) = s ∈ S, (28)

where 0 < α < 1 is the discount factor. Furthermore, there exists a
stationary deterministic policy that attains the minimum in (25) for
each s ∈ S and is average-optimal.



Mobihoc ’19, July 2–5, 2019, Catania, Italy

Proof. The proof idea of this proposition is different from those

used in literature such as [14, 15]. In particular, we show that for

every two states s and s′, there exists a stationary deterministic

policy f such that for some k , we have P [s(k) = s′ |s(0) = s, f ] > 0,

i.e., we have a communicating Markov decision process (MDP). For

details, see our technical report [3]. □

We can deduce from Proposition 3.6 that the optimal waiting

time is a fixed function of the state s. Next, we use the relative value
iteration algorithm to obtain the optimal sampler for minimizing

the TaA, and then exploit the structure of our problem to reduce

its complexity.

3.3.3 Optimal Sampler Structure. The relative value iteration (RVI)

algorithm [28, Section 9.5.3], [20, Page 171] can be used to solve

the Bellman’s equation (25). Starting with an arbitrary state o, a
single iteration for the RVI algorithm is given as follows:

Qn+1(s, z) = C(s, z) +
∑
s′∈S

Pss′(z)hn (s′),

Jn+1(s) = min

z∈Z
(Qn+1(s, z)),

hn+1(s) = Jn+1(s) − Jn+1(o),

(29)

where Qn+1(s, z), Jn (s), and hn (s) denote the state action value

function, value function, and relative value function for iteration

n, respectively. At the beginning, we set J0(s) = 0 for all s ∈ S,

and then we repeat the iteration of the RVI algorithm as described

before
3
.

The complexity of the RVI algorithm is high due to many sources

(i.e., curse of dimensionatlity [26]). Thus, we need to simplify the

RVI algorithm. To that end, we show that the optimal sampler has

a threshold property that can reduce the complexity of the RVI

algorithm.

Proposition 3.7. Let As be the sum of the age values of state s.
Then, the optimal waiting time of any state s with As ≥ (∆̄avg-opt −

mE[Y ]) is zero.

Proof. See our technical report [3]. □

We can exploit Proposition 3.7 to reduce the complexity of the

RVI algorithm as follows. The optimal waiting time for any state

s whose As ≥ (∆̄avg-opt −mE[Y ]) is zero. Thus, we need to solve

(29) only for the states whose As ≤ (∆̄avg-opt −mE[Y ]). As a result,
we reduce the number of computations required along the system

state space, which reduce the complexity of the RVI algorithm. Note

that ∆̄avg-opt can be obtained using the bisection method or any

other one-dimensional search methods. Combining this with the

result of Proposition 3.7 and the RVI algorithm, we propose the

“threshold-based sampler” in Algorithm 1, where z∗s is the optimal

waiting time for state s. In the outer layer of Algorithm 1, bisection

is employed to obtain ∆̄avg-opt, where β converges to ∆̄avg-opt.

Note that, according to [20, 28], J (o) in Algorithm 1 converges

to the optimal average cost per stage. Moreover, the value of u

3
According to [20, 28], a sufficient condition for the convergence of the RVI algorithm

is the aperiodicity of the transition matrices of stationary deterministic optimal policies.

In our case, these transition matrices depend on the service times. This condition can

always be achieved by applying the aperiodicity transformation as explained in [28,

Section 8.5.4], which is a simple transformation. However, This is not always necessary

to be done.

Algorithm 1: Threshold-based sampler based on RVI algorithm.

1 given l = 0, sufficiently large u , tolerance ϵ1 > 0, tolerance ϵ2 > 0;

2 while u − l > ϵ1 do
3 β = l+u

2
;

4 J (s) = 0, h(s) = 0, hlast(s) = 0 for all states s ∈ S;

5 while maxs∈S |h(s) − hlast(s) | > ϵ2 do
6 for each s ∈ S do
7 if As ≥ (β −mE[Y ]) then
8 z∗s = 0;

9 else
10 z∗s = argminz∈Z (As − β )(z + E[Y ]) + m

2
(z2 + 2zE[Y ] +

E
[
Y 2

]
) +

∑
s′∈S Pss′ (z)h(s′);

11 end
12 J (s) = (As − β )(z + E[Y ]) + m

2
(z2 + 2zE[Y ] + E

[
Y 2

]
) +∑

s′∈S Pss′ (z∗s )h(s′);
13 end
14 hlast(s) = h(s);
15 h(s) = J (s) − J (o);
16 end
17 if J (o) ≥ 0 then
18 u = β ;
19 else
20 l = β ;
21 end
22 end

in Algorithm 1 can be initialized to the value of the TaA of the

zero-wait sampler (as the TaA of the zero-wait sampler provides an

upper bound on the optimal TaA), which can be easily calculated.

The RVI algorithm and Whittle’s methodology have been used

in literature to obtain the optimal age scheduler in a time-slotted

multi-source networks (e.g.,[14, 15]). Since they considered time-

slotted system, their model belongs to the class of MDPs. In contrast,

we consider random discrete transmission times that can be more

than one time slot. Thus, our model belongs to the class of SMDPs,

and hence is different from those in [14, 15].

In conclusion, the optimal solution for Problem (7) is manifested

in the following theorem.

Theorem 3.8. The optimal solution for Problem (7) is the MAF
scheduler and the threshold-based sampler.

Proof. The theorem follows directly fromProposition 3.2, Propo-

sition 3.6, and Proposition 3.7 □

Although the work in [35] provided the solution of the optimal

sampling problem for minimizing the age in single source systems,

its results hold only when there is a bound on the waiting times. In

this paper, we show that we can indeed generalize our results and

eliminate the upper bound on the waiting times,M . In particular,

we show that for a large enoughM , the obtained solution is as if the

upper boundM is removed. Let ∆̄∞
avg-opt

and f ∗∞ denote the optimal

TaA and optimal sampler when the upper bound on the waiting

times is∞, respectively. Moreover, let ∆̄M
avg-opt

and f ∗M denote the

optimal TaA and optimal sampler when the upper bound on the

waiting times isM , respectively. Our result is manifested as follows.

Theorem 3.9. There exists No ∈ R+ such that for allM ≥ No , we
have

f ∗∞ = f ∗M , ∆̄
∞
avg-opt = ∆̄Mavg-opt. (30)

Proof. See our technical report [3]. □
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The authors in [15] obtained a similar result, where they showed

that the truncated MDP for solving the scheduling problem in multi-

source systems with stochastic arrivals converges to the original

MDP (with infinite state space) as the truncate level goes to∞. How-

ever, for very low arrival rates, the truncate level can be achieved

even under optimal policies. In this paper, we show that the trun-

cate level on the waiting times can actually be removed without

affecting the optimal result.

4 BELLMAN’S EQUATION APPROXIMATION
In this section, we provide an approximate analysis for Bellman

equation in (25) in order to find a simple algorithm to solve Problem

(17). For a given state s, we denote the next state given z and y by

s′(z,y). From the state evolution in (19) and the transition prob-

ability equation (20), Bellman’s equation in (25) can be rewritten

as

λ = min

z

C(s, z) +
∑
y∈Y

P(Y = y)(h(s′(z,y)) − h(s))
 . (31)

Although h(s) is discrete, we can interpolate the value of h(s) be-
tween the discrete values so that it is differentiable by follow-

ing the same approach in [9] and [40]. Let s = (a[1], . . . ,a[m]),

then using the first order Taylor approximation around a state

t = (at
[1]
, . . . ,at

[m]
) (some fixed state), we get

h(s) ≈ h(t) +
m∑
l=1

(a[l ] − at
[l ])
∂h(t)
∂a[l ]

. (32)

Again, we use the first order Taylor approximation around the state

t, together with the state evolution in (19), to get

h(s′(z,y))≈h(t)+(y−at
[m]

)
∂h(t)
∂a[m]

+

m−1∑
l=1

(a[l+1]−a
t
[l ]+z+y)

∂h(t)
∂a[l ]

. (33)

From (32) and (33), we get

h(s′(z,y))−h(s)≈(y−a[m])
∂h(t)
∂a[m]

+

m−1∑
l=1

(a[l+1]−a[l ]+z+y)
∂h(t)
∂a[l ]

. (34)

This implies that∑
y∈Y

P(Y =y)(h(s′(z,y))−h(s))≈(E[Y ]−a[m])
∂h(t)
∂a[m]

+

m−1∑
l=1

(a[l+1]−a[l ]+z+E[Y ])
∂h(t)
∂a[l ]

.

(35)

Using (31) with (35), we can get the following approximated Bell-

man’s equation.

λ ≈min

z
(As − ∆̄avg-opt)(z + E[Y ]) +

m

2

((z)2 + 2zE[Y ] + E
[
Y 2

]
)

+ (E[Y ] − a[m])
∂h(t)
∂a[m]

+

m−1∑
l=1

(a[l+1] − a[l ] + z + E[Y ])
∂h(t)
∂a[l ]

,

where As is the sum of the age values of state s. A necessary condi-

tion for minimizing the RHS of the previous equation is to set its

derivative to zero. We get

As − ∆̄avg-opt +mz +mE[Y ] +
m−1∑
l=1

∂h(t)
∂a[l ]

= 0. (36)
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Figure 4: TaPA versus transmission probability p for an up-
date system withm = 3 sources.

Rearranging (36), we get

ẑ∗s =


∆̄avg-opt −mE[Y ] −

∑m−1

l=1

∂h(t)
∂a[l ]

m
−
As
m


+

, (37)

where ẑ∗s is the optimal solution of the approximated Bellman’s

equation for state s. Note that the term

∑m−1

i=1

∂h(t)
∂a[i ]

is constant.

Hence, (37) can be written as

ẑ∗s =

[
th −

As
m

]+
, (38)

where we have used Theorem 3.9 to eliminate the upper boundM in

(38) (or simplyM can be set to be large enough such that it is greater

than the optimal threshold in (38)). The solution in (38) is in the

form of the water-filling solution as we compare a fixed threshold

(th) with the average age of a state s. The solution in (38) suggests

that the water-filling solution can approximate the optimal solution

of the original Bellman’s equation in (25). The optimal threshold

(th) in (38) can be obtained using a golden-section method [27]. We

evaluate the performance of the water-filling solution obtained in

(38) in the next section.

5 NUMERICAL RESULTS
We present some numerical results to verify our theoretical results.

We consider an information update system withm = 3 sources. The

packet transmission times are either 0 or 3 with probabilityp and 1−

p, respectively. We use “RAND" to represent the random scheduler

in which a source is chosen randomly to be served. Also, we use

“constant-wait sampler" to represent the sampler that imposes a

constant waiting time after each delivery with Zi = 0.3E[Y ], ∀i .
Fig. 4 illustrates the TaPA versus the transmission probability p.

As we can observe, with fixing the scheduling policy to the MAF

scheduler, the zero-wait sampler provides a lower TaPA compared to

the constant-wait sampler. This observation agreeswith Proposition

3.3. However, as wewill see later, zero-wait sampler does not always

minimize the TaA.
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Figure 5: TaA versus transmission probability p for an up-
date system withm = 3 sources.

Fig. 5 illustrates the TaA versus the transmission probability p.
For the zero-wait sampler, we find that following the MAF sched-

uler provides a lower TaA than that is resulting from following

the RAND scheduler. This agrees with Proposition 3.2. Moreover,

when the scheduling policy is fixed to the MAF scheduler, we find

that the TaA results from the threshold-based sampler is lower

than those result from the zero-wait sampler and the constant-wait

sampler. This observation implies the following: i) The zero-wait

sampler does not necessarily minimize the TaA, ii) optimizing the

scheduling policy only is not enough to minimize the TaA and

we have to optimize both the scheduling policy and the sampling

policy together to minimize the TaA. Finally, as we can observe,

the TaA resulting from the water-filling sampler almost coincides

on the TaA resulting from the threshold-based sampler.

6 CONCLUSION
In this paper, we studied the problem of finding the optimal decision

policy that controls the packet generation times and transmission

order of the sources to minimize the TaPA and TaA in multi-source

information update system. We showed the MAF scheduler and

the zero-wait sampler are jointly optimal for minimizing the TaPA.

Moreover, we showed that the MAF scheduler and the threshold-

based sampler, that is based on the RVI algorithm, are jointly opti-

mal for minimizing the TaA. Finally, we provided an approximate

analysis of Bellman’s equation and showed that the water-filling

solution can approximate the threshold-based sampler. The numeri-

cal result showed that the performance of the water-filling solution

is almost the same as that of the threshold-based sampler.
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A PROOF OF PROPOSITION 3.2
Let the vector ∆π (t) = (∆[1],π (t), . . . ,∆[m],π (t)) denote the system
state at time t when the scheduling strategy π is followed, where

∆[l ],π (t) is the l-th largest age of the sources at time t under the
scheduling strategy π . Let {∆π (t), t ≥ 0} denote the state process

when the scheduling strategy π is followed. For notational simplic-

ity, let P represent the MAF scheduling strategy. Throughout the

proof, we assume that ∆π (0
−) = ∆P (0

−) for all π and the sampling

strategy is fixed to an arbitrarily chosen one. The key step in the

proof of Proposition 3.2 is the following lemma, where we compare

the scheduling strategy P with any arbitrary scheduling strategy π .

Lemma A.1. Suppose that ∆π (0
−) = ∆P (0

−) for all scheduling
strategy π and the sampling strategy is fixed, then we have

{∆P (t), t ≥ 0} ≤st {∆π (t), t ≥ 0} (39)

We use a coupling and forward induction to prove Lemma A.1.

For any scheduling strategy π , suppose that the stochastic processes

∆̃P (t) and ∆̃π (t) have the same stochastic laws as ∆P (t) and ∆π (t).
The state processes ∆̃P (t) and ∆̃π (t) are coupled such that the

packet service times are equal under both scheduling policies, i.e.,

Yi ’s are the same under both scheduling policies. Such a coupling

is valid since the service time distribution is fixed under all policies.

Since the sampling strategy is fixed, such a coupling implies that

the packet generation and delivery times are the same under both

scheduling strategies. According to Theorem 6.B.30 of [30], if we

can show

P
[
∆̃P (t) ≤ ∆̃π (t), t ≥ 0

]
= 1, (40)

then (39) is proven. To ease the notational burden, we will omit the

tildes on the coupled versions in this proof and just use ∆P (t) and
∆π (t). Next, we compare strategy P and strategy π on a sample

path and prove (39) using the following lemma:

Lemma A.2 (Inductive Comparison). Suppose that a packet
with generation time S is delivered under the scheduling strategy
P and the scheduling strategy π at the same time t . The system
state of the scheduling strategy P is ∆P before the packet delivery,
which becomes ∆′

P after the packet delivery. The system state of the
scheduling strategy π is ∆π before the packet delivery, which becomes
∆′
π after the packet delivery. If

∆[i],P ≤ ∆[i],π , i = 1, . . . ,m, (41)

then
∆′
[i],P ≤ ∆′

[i],π , i = 1, . . . ,m. (42)

Lemma A.2 is proven by following the proof idea of [34, Lemma

2]. For the sake of completeness, we provide the proof of Lemma

A.2 as follows.

Proof. Since only one source can be scheduled at a time and the

scheduling strategy P is the MAF scheduling strategy, the packet

with generation time S must be generated from the source with

maximum age ∆[1],P , call it source l
∗
. In other words, the age of

source l∗ is reduced from the maximum age ∆[1],P to the minimum

age ∆′
[m],P = t − S , and the age of the other (m − 1) sources remain

unchanged. Hence,

∆′
[i],P = ∆[i+1],P , i = 1, . . . ,m − 1,

∆′
[m],P = t − S .

(43)

In the scheduling strategy π , this packet can be generated from any

source. Thus, for all cases of strategy π , it must hold that

∆′
[i],π ≥ ∆[i+1],π , i = 1, . . . ,m − 1. (44)

By combining (41), (43), and (44), we have

∆′
[i],π ≥ ∆[i+1],π ≥ ∆[i+1],P = ∆′

[i],P , i = 1, . . . ,m − 1. (45)

In addition, since the same packet is also delivered under the sched-

uling strategy π , the source from which this packet is generated

under policy π will have the minimum age after the delivery, i.e.,

we have

∆′
[m],π = t − S = ∆′

[m],P . (46)

By this, (42) is proven. □

Proof of Lemma A.1. Using the coupling between the system

state processes, and for any given sample path of the packet service

times, we consider two cases:

Case 1: When there is no packet delivery, the age of each source

grows linearly with a slope 1.

Case 2:When a packet is delivered, the ages of the sources evolve

according to Lemma A.2.

By induction over time, we obtain

∆[i],P (t) ≤ ∆[i],π (t), i = 1, . . . ,m, t ≥ 0. (47)

Hence, (40) follows which implies (39) by Theorem 6.B.30 of [30].

This completes the proof. □

Proof of Proposition 3.2. Since the TaPA and TaA for any

scheduling policy π are the expectation of non-decreasing function-

als of the process {∆π (t), t ≥ 0}, (39) implies (8) and (9) using the

properties of stochastic ordering [30]. This completes the proof. □
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